Establishment of highly sensitive lateral flow immunochromatographic strips for quinclorac detection utilizing signal amplification nanoparticles
Highly selective herbicide quinclorac (Qui) is a type of quinoline carboxylic acid hormone herbicide, which has the characteristics of long half-life and difficulty for degradation, causing high risk to the environmental safety. In this study, anti-Qui 8A3 monoclonal antibody (mAb) with good specifi...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2025-01, Vol.463 (Pt 1), p.140960, Article 140960 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highly selective herbicide quinclorac (Qui) is a type of quinoline carboxylic acid hormone herbicide, which has the characteristics of long half-life and difficulty for degradation, causing high risk to the environmental safety. In this study, anti-Qui 8A3 monoclonal antibody (mAb) with good specificity and high affinity (3.89 × 109 L/mol) was prepared, and two kinds of lateral flow immunochromatographic strips (LFICS) including nano-flower nanoparticles (AuNF) - and latex microsphere (LM)- based LFICS were established based on the antibody and signal amplification. The linear range of the AuNF- and LM- based LFICS were 5.31–345.48 ng/mL and 2.52–257.92 ng/mL, respectively. The limit of detection (LOD) of the AuNF- and LM- based LFICS were determined to be 5.31 ng/mL and 2.52 ng/mL, respectively. In summary, the developed LFICS using AuNF and LM as signal amplification reporters exhibited excellent sensitivity and provided the rapid on-site screening of Qui and other analytes in food safety field.
•Anti-Qui mAb with high affinity (3.89 × 109 L/mol) was obtained.•Multi-branched nano-flower nanoparticles (AuNF) was explored as signal amplification.•Latex microsphere (LM) with high optical extinction was employed as signal reporter.•Sensitivity of immunochromatography was enhanced utilizing AuNF and LM nanoparticles. |
---|---|
ISSN: | 0308-8146 1873-7072 1873-7072 |
DOI: | 10.1016/j.foodchem.2024.140960 |