Spatiotemporal changes and background atmospheric factors associated with forest fires in Turkiye

In this study, spatiotemporal analysis of forest fires in Turkiye was undertaken, with a specific focus on the large-scale atmospheric systems responsible for causing these fires. For this purpose, long-term variations in forest fires were classified based on the occurrence types (i.e. natural/light...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2024-10, Vol.196 (10), p.891, Article 891
Hauptverfasser: Arslan, Hilal, Baltaci, Hakki, Demir, Goksel, Ozcan, Huseyin Kurtulus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, spatiotemporal analysis of forest fires in Turkiye was undertaken, with a specific focus on the large-scale atmospheric systems responsible for causing these fires. For this purpose, long-term variations in forest fires were classified based on the occurrence types (i.e. natural/lightning, negligence/inattention, arson, accident, unknown). The role of large-scale atmospheric circulations causing natural originated forest fires was investigated using NCEP/NCAR Reanalysis sea level pressure, and surface wind products for the selected episodes. According to the main results, Mediterranean (MeR), Aegean (AR), and Marmara (MR) regions of Turkiye are highly susceptible to forest fires. Statistically significant number of forest fires in the MeR and MR regions are associated with global warming trend of the Eastern Mediterranean Basin. In monthly distribution, forest fires frequently occur in the MeR part of Turkiye during September, August, and June months, respectively, and heat waves are responsible for forest fires in 2021. As a consequence of the extending summer Asiatic monsoon to the inner parts of Turkiye and the location of Azores surface high over Balkan Peninsula result in atmospheric blocking and associated calm weather conditions in the MeR (e.g. Mugla and Antalya provinces). When this blocking continues for a long time, southerly winds on the back slopes of the Taurus Mountains create a foehn effect, calm weather conditions and lack of moisture in the soil of Antalya and Mugla settlements trigger the formation of forest fires.
ISSN:0167-6369
1573-2959
1573-2959
DOI:10.1007/s10661-024-13027-w