Uncovering chemical homology of superheavy elements: a close look at astatine

The fascination with superheavy elements (SHE) spans the nuclear physics, astrophysics, and theoretical chemistry communities. Extreme relativistic effects govern these elements' chemistry and challenge the traditional notion of the periodic law. The experimental quest for SHE critically depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-09, Vol.26 (36), p.23823-23834
Hauptverfasser: Demidov, Yuriy A, Shalaevsky, Alexander A, Oleynichenko, Alexander V, Rusakov, Alexander A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fascination with superheavy elements (SHE) spans the nuclear physics, astrophysics, and theoretical chemistry communities. Extreme relativistic effects govern these elements' chemistry and challenge the traditional notion of the periodic law. The experimental quest for SHE critically depends on theoretical predictions of these elements' properties, especially chemical homology, which allows for successful prototypical experiments with more readily available lighter homologues of SHE. This work is a comprehensive quantum-chemical investigation into astatine (At) as a non-intuitive homologue of element 113, nihonium (Nh). Combining relativistic coupled-cluster and density functional theory approaches, we model the behaviour of At and AtOH in thermochromatographic experiments on a pristine gold surface. Insights into the electronic structure of AtOH and NhOH and accurate estimates of At-gold and AtOH-gold adsorption energies rationalise recent experimental findings and justify the use of At as a chemical homologue of Nh for the successful design of future experiments on Nh detection and chemical characterisation. What happens to periodic trends at the bottom of the periodic table? It's non-intuitive, complicated, and requires profound quantum-mechanical analysis.
ISSN:1463-9076
1463-9084
1463-9084
DOI:10.1039/d4cp01868k