Potential Application of 2D Haeckelite MoS2 as an Anode Material for Mg Ion Batteries

The design and preparation of anode materials with structural stability, fast ion transmission, and low open-circuit voltage are critical to the development of magnesium ion batteries (MIBs). The feasibility of the unique phase Haeckelite MoS2 (Hae-MoS2) monolayer with Haeckelite structure as a pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-09, Vol.40 (37), p.19396-19403
Hauptverfasser: Hu, Junshan, Jin, Wei, Tan, Zhaoyang, Wu, Song, Tian, Jingyu, Sun, Yujie, Ding, Chang-Chun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design and preparation of anode materials with structural stability, fast ion transmission, and low open-circuit voltage are critical to the development of magnesium ion batteries (MIBs). The feasibility of the unique phase Haeckelite MoS2 (Hae-MoS2) monolayer with Haeckelite structure as a potential anode material for MIBs was investigated using density functional theory (DFT) calculations. The Hae-MoS2 monolayer exhibits excellent structural stability and semimetallic characteristics with a Dirac cone located at the Gamma point of band structure. Mg ion is easily adsorbed on the Hae-MoS2 monolayer surface with an adsorption energy of −2.06 eV and can diffuse rapidly with a low diffusion energy barrier (0.3 eV), indicating excellent charge and discharge rates. Most importantly, the Hae-MoS2 monolayer exhibits a suitable open-circuit voltage, which falls within the desired voltage range and ensures the safety of battery performance. These exceptional properties indicate that the Hae-MoS2 monolayer can be proposed as a candidate for anode material for MIBs.
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/acs.langmuir.4c01637