Chitosan-enhanced sensitivity of mercaptoundecanoic acid (MUA)- capped gold nanorod based localized surface plasmon resonance (LSPR) biosensor for detection of alpha-synuclein oligomer biomarker in parkinson's disease
Alpha-synuclein oligomers play a crucial role in the early diagnosis of Parkinson's disease (PD). In this study, a mercaptoundecanoic acid (MUA)-capped gold nanorod (GNR)-coated and chitosan (CH)-immobilized fiber optic probe has shown considerable sensitivity of its detection. The proposed U-s...
Gespeichert in:
Veröffentlicht in: | Biotechnology and applied biochemistry 2024-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alpha-synuclein oligomers play a crucial role in the early diagnosis of Parkinson's disease (PD). In this study, a mercaptoundecanoic acid (MUA)-capped gold nanorod (GNR)-coated and chitosan (CH)-immobilized fiber optic probe has shown considerable sensitivity of its detection. The proposed U-shaped fiber optic biosensor based on localized surface plasmon resonance (LSPR) was applied to detect α-syn oligomer (OA) biomarker. By analyzing OA concentrations, the biosensor achieved a limit of detection of (LOD) 11 pM within the concentration range of 10-100 pM and the sensitivity value was found as 502.69 Δλ/RIU. Upon analysis of the CV% (coefficient of variation) and accuracy/recovery values, it is revealed that the sensor successfully fulfilled the criteria for success, displaying accuracy/recovery values within the range of 80%-120% and CV% values below 20%. This sensor presents significant advantages, including high sensitivity, specificity, and ability to detect very low concentrations of OA. In conclusion, the suggested U-shaped fiber optic biosensor has the potential to be valuable in the early detection of PD from a clinical perspective. |
---|---|
ISSN: | 0885-4513 1470-8744 1470-8744 |
DOI: | 10.1002/bab.2653 |