The influence of microstructural arrangement on the response of polymer composites in planar impact

In recent years there has been an increased demand for advanced materials that can sustain rapid dynamic loadings. To this end, we simulate the transient response of composites with nonuniform arrangements of their microstructures. First, a constitutive model that reproduces experimentally measured...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2007-12, Vol.44 (24), p.7841-7861
Hauptverfasser: deBotton, G., Shaine, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years there has been an increased demand for advanced materials that can sustain rapid dynamic loadings. To this end, we simulate the transient response of composites with nonuniform arrangements of their microstructures. First, a constitutive model that reproduces experimentally measured response of a glass-fiber composites is identified and adjusted. This involves a Mie–Grüneisen equation of state for the dilatational response together with a Voigt model for the isochoric behavior which is modified to include damage effects from void nucleation and growth. Then, with the aid of this constitutive model, a sequence of simulations of composites with nonuniform distributions of the reinforcement are executed. We find that composites with increasing volume fraction of the reinforcement along the impact direction tend to attenuate the intensity of the propagating waves. This attenuation delays the initiation of failure mechanisms to higher impact velocities and improves the composite’s sturdiness.
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2007.05.009