Measurement of the Total Energy Release Rate for Cracks in PZT Under Combined Mechanical and Electrical Loading

Four-point-bending V-notched specimens of lead zirconate titanate (PZT) poled parallel to the long axis are fractured under conditions of controlled crack growth in a custom-made device. In addition to the mechanical loading electric fields, up to 500V∕mm are applied parallel and anti-parallel to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics 2007-11, Vol.74 (6), p.1197-1211
Hauptverfasser: Jelitto, H., Felten, F., Swain, M. V., Balke, H., Schneider, G. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four-point-bending V-notched specimens of lead zirconate titanate (PZT) poled parallel to the long axis are fractured under conditions of controlled crack growth in a custom-made device. In addition to the mechanical loading electric fields, up to 500V∕mm are applied parallel and anti-parallel to the poling direction, i.e., perpendicular to the crack surface. To determine the different contributions to the total energy release rate, the mechanical and the piezoelectric compliance, as well as the electrical capacitance of the sample, are recorded continuously using small signal modulation/demodulation techniques. This allows for the calculation of the mechanical, the piezoelectric, and the electrical part of the total energy release rate due to linear processes. The sum of these linear contributions during controlled crack growth is attributed to the intrinsic toughness of the material. The nonlinear part of the total energy release rate is mostly associated to domain switching leading to a switching zone around the crack tip. The measured force-displacement curve, together with the modulation technique, enables us to determine this mechanical nonlinear contribution to the overall toughness of PZT. The intrinsic material toughness is only slightly dependent on the applied electric field (10% effect), which can be explained by screening charges or electrical breakdown in the crack interior. The part of the toughness due to inelastic processes increases from negative to positive electric fields by up to 100%. For the corresponding nonlinear electric energy change during crack growth, only a rough estimate is performed.
ISSN:0021-8936
1528-9036
DOI:10.1115/1.2744027