A Highly Tumor Permeating DNA Nanoplatform for Efficient Remodeling of Immunosuppressive Tumor Microenvironments

Immunosuppressive tumor microenvironment and limited intratumoral permeation have largely constrained the outcome of tumor therapy. Herein, we report a tailored DNA structure-based nanoplatform with striking tumor-penetrating capability for targeted remodeling of immunosuppressive tumor microenviron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-10, p.e202412804
Hauptverfasser: Wang, Hong, Yang, Changping, Wu, Tiantian, Fan, Jing, Zhu, Hanyin, Liu, Jianbing, Ding, Baoquan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Immunosuppressive tumor microenvironment and limited intratumoral permeation have largely constrained the outcome of tumor therapy. Herein, we report a tailored DNA structure-based nanoplatform with striking tumor-penetrating capability for targeted remodeling of immunosuppressive tumor microenvironment in vivo. In our design, chemo-immunomodulator (gemcitabine) can be precisely grafted in DNA sequences via a reactive oxygen species (ROS)-sensitive linker. After self-assembly, the gemcitabine-grafted DNA structure can site-specifically organize legumain-activatable melittin pro-peptide (promelittin) on each vertex for intratumoral delivery and further function as the template to load photosensitizers (methylene blue) for ROS production. The tailored DNA nanoplatform can achieve targeted accumulation, highly improved intratumoral permeation, and efficient immunogenic cell death of tumor cells by laser irradiation. Finally, the immunosuppressive tumor microenvironment can be successfully remodeled by reducing multi-type immunosuppressive cells and enhancing the infiltration of cytotoxic lymphocytes in the tumor. This rationally developed multifunctional DNA nanoplatform provides a new avenue for the development of tumor therapy.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202412804