Summary statistics knockoffs inference with family-wise error rate control

Testing multiple hypotheses of conditional independence with provable error rate control is a fundamental problem with various applications. To infer conditional independence with family-wise error rate (FWER) control when only summary statistics of marginal dependence are accessible, we adopt Ghost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2024-07, Vol.80 (3)
Hauptverfasser: Yu, Catherine Xinrui, Gu, Jiaqi, Chen, Zhaomeng, He, Zihuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Testing multiple hypotheses of conditional independence with provable error rate control is a fundamental problem with various applications. To infer conditional independence with family-wise error rate (FWER) control when only summary statistics of marginal dependence are accessible, we adopt GhostKnockoff to directly generate knockoff copies of summary statistics and propose a new filter to select features conditionally dependent on the response. In addition, we develop a computationally efficient algorithm to greatly reduce the computational cost of knockoff copies generation without sacrificing power and FWER control. Experiments on simulated data and a real dataset of Alzheimer's disease genetics demonstrate the advantage of the proposed method over existing alternatives in both statistical power and computational efficiency.
ISSN:0006-341X
1541-0420
1541-0420
DOI:10.1093/biomtc/ujae082