Sodium-dependent glucose transporter 2 inhibitors effects on myocardial function in patients with type 2 diabetes and asymptomatic heart failure

Sodium-dependent glucose transporter 2 inhibitors (SGLT2i) have shown efficacy in reducing heart failure (HF) burden in a very heterogeneous groups of patients, raising doubts about some contemporary assumptions of their mechanism of action. We previously published a prospective observational study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of cardiology 2024-08, Vol.16 (8), p.448
Hauptverfasser: Grubić Rotkvić, Petra, Rotkvić, Luka, Đuzel Čokljat, Ana, Cigrovski Berković, Maja
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sodium-dependent glucose transporter 2 inhibitors (SGLT2i) have shown efficacy in reducing heart failure (HF) burden in a very heterogeneous groups of patients, raising doubts about some contemporary assumptions of their mechanism of action. We previously published a prospective observational study that evaluated mechanisms of action of SGLT2i in patients with type 2 diabetes who were in HF stages A and B on dual hypoglycemic therapy. Two groups of patients were included in the study: the ones receiving SGLT2i as an add-on agent to metformin and the others on dipeptidyl peptidase-4 inhibitors as an add-on to metformin due to suboptimal glycemic control. To evaluate the outcomes regarding natriuretic peptide, oxidative stress, inflammation, blood pressure, heart rate, cardiac function, and body weight. The study outcomes were examined by dividing each treatment arm into two subgroups according to baseline parameters of global longitudinal strain (GLS), N-terminal pro-brain natriuretic peptide, myeloperoxidase (MPO), high-sensitivity C-reactive protein (hsCRP), and systolic and diastolic blood pressure. To evaluate the possible predictors of observed changes in the SGLT2i arm during follow-up, a rise in stroke volume index, body mass index (BMI) decrease, and lack of heart rate increase, linear regression analysis was performed. There was a greater reduction of MPO, hsCRP, GLS, and blood pressure in the groups with higher baseline values of mentioned parameters irrespective of the therapeutic arm after 6 months of follow-up. Significant independent predictors of heart rate decrease were a reduction in early mitral inflow velocity to early diastolic mitral annular velocity at the interventricular septal annulus ratio and BMI, while the predictor of stroke volume index increase was SGLT2i therapy itself. SGLT2i affect body composition, reduce cardiac load, improve diastolic/systolic function, and attenuate the sympathetic response. Glycemic control contributes to the improvement of heart function, blood pressure control, oxidative stress, and reduction in inflammation.
ISSN:1949-8462
1949-8462
DOI:10.4330/wjc.v16.i8.448