Dosimetric comparison of hippocampal-sparing technologies in patients with low-grade glioma

Abstract Background Radiotherapy (RT) plays an integral role in the management of low-grade gliomas (LGG). Late toxicity from RT can cause progressive neurocognitive dysfunction. Radiation-induced damage to the hippocampus (HCP) plays a considerable role in memory decline. Advancements in photon pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology advances 2024-01, Vol.6 (1), p.vdae131
Hauptverfasser: Williamson, Aoife, Houston, Peter, Paterson, Jennifer, Chalmers, Anthony J, McLoone, Philip, Fullerton, Natasha, Foo, Sin Yee, James, Allan, Nowicki, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Radiotherapy (RT) plays an integral role in the management of low-grade gliomas (LGG). Late toxicity from RT can cause progressive neurocognitive dysfunction. Radiation-induced damage to the hippocampus (HCP) plays a considerable role in memory decline. Advancements in photon planning software have resulted in the development of multi-criteria optimization (MCO) and HyperArc technologies which may improve HCP sparing while maintaining planning target volume (PTV) target coverage. Methods Three planning methods for hippocampal sparing (HS) were compared, volumetric modulated arc therapy (VMAT) without HS (VMAT_noHS), VMAT with HS (VMAT_HS), MCO with HS (MCO_HS), and HyperArc with HS (HyperArc_HS). Results Twenty-five patients were identified. The contralateral HCP was spared in 16 patients and bilateral HCP in 9 patients with superiorly located tumors. All 3 HS planning techniques showed significant reductions in dose to the spared HCP in contralateral cases but only VMAT_HS and MCO_HS achieved this in bilateral cases (P 
ISSN:2632-2498
2632-2498
DOI:10.1093/noajnl/vdae131