Spatial heterogeneity: Necessary and feasible for revealing soil trace elements pollution, sources, risks, and their links

The source diversity and health risk of trace elements (TEs) in soil make it necessary to reveal the relationship between pollution, source, and risk. However, neglect of spatial heterogeneity restricts the reliability of existing identification methods. In this study, spatial heterogeneity is propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-11, Vol.479, p.135698, Article 135698
Hauptverfasser: Zhu, Guanhua, Zhu, Ganghui, Tong, Baocai, Zhang, Dasheng, Wu, Jin, Zhai, Yuanzheng, Chen, Haiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The source diversity and health risk of trace elements (TEs) in soil make it necessary to reveal the relationship between pollution, source, and risk. However, neglect of spatial heterogeneity restricts the reliability of existing identification methods. In this study, spatial heterogeneity is proposed as a necessary and feasible factor for accurately dissecting the pollution-source-risk link of soil TEs. A comprehensive framework is developed by integrating positive matrix factorization, Geodetector, and risk evaluation tools, and successfully applied in a mining-intensive city in northern China. Overall, the TEs are derived from natural background (28.5 %), atmospheric deposition (25.6 %), coal mining (21.8 %), and metal industry (24.1 %). The formation mechanism of heterogeneity for high-variance TEs (Se, Hg, Cd) is first systematically deciphered by revealing the heterogeneous source-sink relationship. Specifically, Se is dominated (76.5 %) by heterogeneous coal mining (q=0.187), Hg is determined (92.6 %) by the heterogeneity of metal mining (q=0.183) and smelting (q=0.363), and Cd is caused (50.9 %) by heterogeneous atmospheric deposition (q>0.254) co-influenced by the terrains and soil properties. Highly heterogeneous sources are also noteworthy for their potential to pose extreme risks (THI=1.122) in local areas. This study highlights the necessity of integrating spatial heterogeneity in pollution and risk assessment of soil TEs. [Display omitted] •Spatial heterogeneity is indispensable for revealing the pollution-source-risk link.•The formation mechanism of element spatial heterogeneity is deciphered.•Spatial heterogeneity seriously affects the source-sink relationship of soil TEs.•Sources with high heterogeneity can cause extreme risks in some areas.
ISSN:0304-3894
1873-3336
1873-3336
DOI:10.1016/j.jhazmat.2024.135698