3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation
Despite that the segment anything model (SAM) achieved impressive results on general-purpose semantic segmentation with strong generalization ability on daily images, its demonstrated performance on medical image segmentation is less precise and unstable, especially when dealing with tumor segmentat...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2024-12, Vol.98, p.103324, Article 103324 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite that the segment anything model (SAM) achieved impressive results on general-purpose semantic segmentation with strong generalization ability on daily images, its demonstrated performance on medical image segmentation is less precise and unstable, especially when dealing with tumor segmentation tasks that involve objects of small sizes, irregular shapes, and low contrast. Notably, the original SAM architecture is designed for 2D natural images and, therefore would not be able to extract the 3D spatial information from volumetric medical data effectively. In this paper, we propose a novel adaptation method for transferring SAM from 2D to 3D for promptable medical image segmentation. Through a holistically designed scheme for architecture modification, we transfer the SAM to support volumetric inputs while retaining the majority of its pre-trained parameters for reuse. The fine-tuning process is conducted in a parameter-efficient manner, wherein most of the pre-trained parameters remain frozen, and only a few lightweight spatial adapters are introduced and tuned. Regardless of the domain gap between natural and medical data and the disparity in the spatial arrangement between 2D and 3D, the transformer trained on natural images can effectively capture the spatial patterns present in volumetric medical images with only lightweight adaptations. We conduct experiments on four open-source tumor segmentation datasets, and with a single click prompt, our model can outperform domain state-of-the-art medical image segmentation models and interactive segmentation models. We also compared our adaptation method with existing popular adapters and observed significant performance improvement on most datasets. Our code and models are available at: https://github.com/med-air/3DSAM-adapter
•2D to 3D adaptation is present that enables SAM to process isotropic volumetric data.•Parameter-efficient fine-tuning is proposed to narrow the domain gap.•Special prompt encoder and mask decoder enhance medical image segmentation performance. |
---|---|
ISSN: | 1361-8415 1361-8423 1361-8423 |
DOI: | 10.1016/j.media.2024.103324 |