Engineered species-selective ion-exchange in tuneable dual-phase zeolite composites

Controllable sorption selectivity in zeolites is crucial for their application in catalysis, gas separation and ion-exchange. Whilst existing approaches to achieving sorption selectivity with natural zeolites typically rely on screening for specific geological deposits, here we develop partial inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-08, Vol.15 (34), p.13699-13711
Hauptverfasser: Reed, James L. A, James, Andrew, Carey, Thomas, Fitzgerald, Neelam, Kellet, Simon, Nearchou, Antony, Farrelly, Adele L, Fell, Harrison A. H, Allan, Phoebe K, Hriljac, Joseph A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controllable sorption selectivity in zeolites is crucial for their application in catalysis, gas separation and ion-exchange. Whilst existing approaches to achieving sorption selectivity with natural zeolites typically rely on screening for specific geological deposits, here we develop partial interzeolite transformation as a straightforward and highly tuneable method to achieve sorption selectivity via forming dual-phase composites with simultaneous control of both phase-ratio and morphology. The dual-cation (strontium and caesium) exchange properties of a series of granular mordenite/zeolite P composites formed from a parent natural mordenite material are demonstrated in complex, industrially relevant multi-ion environments pertinent to nuclear waste management. The relative uptake of caesium and strontium is controlled via the extent of transformation: composites exhibit significantly increased ion-exchange affinity for strontium compared to both the parent mordenite and physical mixtures of mordenite/zeolite P phases with similar phase ratios. The composite with a 40 : 60 mordenite : zeolite P ratio composite achieves higher uptake rates than the natural clinoptilolite material currently used to decontaminate nuclear waste streams at the Sellafield site, UK. In situ X-ray image-guided diffraction experiments during caesium exchange demonstrate that the mordenite core retains rapid caesium uptake likely responsible for the unique ion-exchange chemistry achievable through the partial inter-zeolite transformation. These results offer a straightforward and controllable route to optimised zeolite functionality and a strategy to engineer composites from low-grade natural sources at low cost and with formulation advantages for industrial deployment. The partial interzeolite transformation of a natural mordenite presents an effective method to diversify the structure of natural zeolites and enhance their ion-exchange properties.
ISSN:2041-6520
2041-6539
DOI:10.1039/d4sc02664k