Engineered species-selective ion-exchange in tuneable dual-phase zeolite composites
Controllable sorption selectivity in zeolites is crucial for their application in catalysis, gas separation and ion-exchange. Whilst existing approaches to achieving sorption selectivity with natural zeolites typically rely on screening for specific geological deposits, here we develop partial inter...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2024-08, Vol.15 (34), p.13699-13711 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Controllable sorption selectivity in zeolites is crucial for their application in catalysis, gas separation and ion-exchange. Whilst existing approaches to achieving sorption selectivity with natural zeolites typically rely on screening for specific geological deposits, here we develop partial interzeolite transformation as a straightforward and highly tuneable method to achieve sorption selectivity
via
forming dual-phase composites with simultaneous control of both phase-ratio and morphology. The dual-cation (strontium and caesium) exchange properties of a series of granular mordenite/zeolite P composites formed from a parent natural mordenite material are demonstrated in complex, industrially relevant multi-ion environments pertinent to nuclear waste management. The relative uptake of caesium and strontium is controlled
via
the extent of transformation: composites exhibit significantly increased ion-exchange affinity for strontium compared to both the parent mordenite and physical mixtures of mordenite/zeolite P phases with similar phase ratios. The composite with a 40 : 60 mordenite : zeolite P ratio composite achieves higher uptake rates than the natural clinoptilolite material currently used to decontaminate nuclear waste streams at the Sellafield site, UK.
In situ
X-ray image-guided diffraction experiments during caesium exchange demonstrate that the mordenite core retains rapid caesium uptake likely responsible for the unique ion-exchange chemistry achievable through the partial inter-zeolite transformation. These results offer a straightforward and controllable route to optimised zeolite functionality and a strategy to engineer composites from low-grade natural sources at low cost and with formulation advantages for industrial deployment.
The partial interzeolite transformation of a natural mordenite presents an effective method to diversify the structure of natural zeolites and enhance their ion-exchange properties. |
---|---|
ISSN: | 2041-6520 2041-6539 |
DOI: | 10.1039/d4sc02664k |