Metabolomic profiling integrated with molecular exploring delineates the action of Ligusticum chuanxiong hort. on migraine

Ligusticum chuanxiong hort. (Chuanxiong, CX) is a well-known traditional edible-medicinal herb, especially in brain diseases. However, there is a lack of studies focusing on the action of CX in metabolites of migraine. To investigate the action of the aqueous extract of CX (LCH) on nitroglycerin (NT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytomedicine (Stuttgart) 2024-11, Vol.134, p.155977, Article 155977
Hauptverfasser: Xing, Ziwei, Peng, Fu, Chen, Yu, Wan, Feng, Peng, Cheng, Li, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ligusticum chuanxiong hort. (Chuanxiong, CX) is a well-known traditional edible-medicinal herb, especially in brain diseases. However, there is a lack of studies focusing on the action of CX in metabolites of migraine. To investigate the action of the aqueous extract of CX (LCH) on nitroglycerin (NTG)-induced migraine. The effects and mechanisms of LCH on migraine were evaluated in NTG-induced mice and rats. Laser speckle contrast imaging was performed to detect the cerebral blood flow. Metabolomic analysis in serum and mass spectrometry imaging in brain tissue from NTG-induced rats were conducted to explore the metabolites. The techniques including RT-qPCR, immunohistochemistry, and immunofluorescence were employed to estimate the molecular changes. Totally, 1480 metabolites were identified, among which, 50 and 49 differential metabolites were identified by t-test, fold change, and VIP score for NTG vs. CON and LCH+NTG vs. NTG, respectively. Next, 13 common real difference metabolites were revealed by comparative analysis, and KEGG annotation and enrichment analysis showed that the glutathione (GSH) metabolism pathway played important roles in migraine, whereas the glutamate could be metabolized to γ-glu-cys and converted to GSH. Molecular exploring further confirmed that LCH treatment increased the expression of essential components of GSH synthetase, such as GCLC and GCLM, and elevated the expression levels of Nrf-2 and its downstream targets including HO1 and NQO1. Moreover, the mass spectrometry imaging results found that LCH treatment promoted the synthesis of GSH and the spatial distribution of glucose as well as ATP metabolites to normal levels. To sum up, the present study firstly reveals that LCH plays a therapeutic role for migraine through glucose-glutamate-Nrf-2 axis, which might represent a promising approach in the development of advanced therapeutic strategies for migraine, and the LCH may be an effective drug or dietary supplement for relieving headache. [Display omitted]
ISSN:0944-7113
1618-095X
1618-095X
DOI:10.1016/j.phymed.2024.155977