Few-shot learning with representative global prototype
Few-shot learning is often challenged by low generalization performance due to the model is mostly learned with the base classes only. To mitigate the above issues, a few-shot learning method with representative global prototype is proposed in this paper. Specifically, to enhance generalization to n...
Gespeichert in:
Veröffentlicht in: | Neural networks 2024-12, Vol.180, p.106600, Article 106600 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Few-shot learning is often challenged by low generalization performance due to the model is mostly learned with the base classes only. To mitigate the above issues, a few-shot learning method with representative global prototype is proposed in this paper. Specifically, to enhance generalization to novel class, we propose a strategy for jointly training base and novel classes. This process produces prototypes characterizing the class information called representative global prototypes. Additionally, to avoid the problem of data imbalance and prototype bias caused by newly added categories of sparse samples, a novel sample synthesis method is proposed for augmenting more representative samples of novel class. Finally, representative samples and non-representative samples with high uncertainty are selected to enhance the representational and discriminative abilities of the global prototype. Intensive experiments have been conducted on two popular benchmark datasets, and the experimental results show that this method significantly improves the classification ability of few-shot learning tasks and achieves state-of-the-art performance. |
---|---|
ISSN: | 0893-6080 1879-2782 1879-2782 |
DOI: | 10.1016/j.neunet.2024.106600 |