Gene selection and cancer classification using interaction-based feature clustering and improved-binary Bat algorithm

In high-dimensional gene expression data, selecting an optimal subset of genes is crucial for achieving high classification accuracy and reliable diagnosis of diseases. This paper proposes a two-stage hybrid model for gene selection based on clustering and a swarm intelligence algorithm to identify...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-10, Vol.181, p.109071, Article 109071
Hauptverfasser: Esfandiari, Ahmad, Nasiri, Niki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In high-dimensional gene expression data, selecting an optimal subset of genes is crucial for achieving high classification accuracy and reliable diagnosis of diseases. This paper proposes a two-stage hybrid model for gene selection based on clustering and a swarm intelligence algorithm to identify the most informative genes with high accuracy. First, a clustering-based multivariate filter approach is performed to explore the interactions between the features and eliminate any redundant or irrelevant ones. Then, by controlling for the problem of premature convergence in the binary Bat algorithm, the optimal gene subset is determined using different classifiers with the Monte Carlo cross-validation data partitioning model. The effectiveness of our proposed framework is evaluated using eight gene expression datasets, by comparison with other recently published algorithms in the literature. Experiments confirm that in seven out of eight datasets, the proposed method can achieve superior results in terms of classification accuracy and gene subset size. In particular, it achieves a classification accuracy of 100% in Lymphoma and Ovarian datasets and above 97.4% in the rest with a minimum number of genes. The results demonstrate that our proposed algorithm has the potential to solve the feature selection problem in different applications with high-dimensional datasets. •A new multivariate filter method was developed to identify informative genes.•The BA exploration ability was improved using new inertia weight adjustment methods.•Comprehensive experiments demonstrate the effectiveness of the proposed IFC-iBBA.
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2024.109071