An Efficient and Eco-Friendly Recycling Route of Valuable Metals from Spent Ternary Li-Ion Batteries: Kinetics Evaluation of Chlorination Processes and Regeneration of LiNi0.8Co0.1Mn0.1O2 Cathode Materials
The recycling of spent Li-ion batteries is urgent, and the effective recovery of valuable metals from spent cathode material is an economic and eco-friendly approach. In this study, Ni, Cu, Co, and Mn were extracted synchronously from spent LiNi x Co y Mn1–x–y O2 by chlorination and the complexation...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-09, Vol.16 (36), p.47646-47661 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The recycling of spent Li-ion batteries is urgent, and the effective recovery of valuable metals from spent cathode material is an economic and eco-friendly approach. In this study, Ni, Cu, Co, and Mn were extracted synchronously from spent LiNi x Co y Mn1–x–y O2 by chlorination and the complexation reaction of ammonium chloride at low temperatures. The kinetics of the chlorination process was investigated by nonisothermal thermal analysis to determine the rate equation of metal conversion, and the apparent activation energies were calculated to be 99.96 kJ·mol–1 for lithium and 146.70 kJ·mol–1 for nickel, cobalt, and manganese, respectively. The separation of valuable metals from polymetallic leaching solution and the regeneration of cathode materials were further investigated to promote the industrialization of the process. The recoveries of Ni, Co, Mn, and Li can reach 97.75, 99.99, 99.99, and 92.23%, respectively. The prepared LiNi0.8Co0.1Mn0.1O2 precursor is a multilayer spherical particle formed by stacking primary hexagonal nanosheets along the (010) crystal axis, the formation mechanism of which was discussed. The effect of temperature, time, and mixed lithium ratio on the performance of single crystal LiNi0.8Co0.1Mn0.1O2 cathode in the synthesis process was investigated to determine the optimum conditions. Compared with commercial materials, the prepared single crystal LiNi0.8Co0.1Mn0.1O2 cathode has a more regular crystal structure and higher initial discharge capacity (215.9 mAh·g–1 at 0.1 C). |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c09834 |