Harnessing the plant microbiome for environmental sustainability: From ecological foundations to novel applications

In plant environments, there exist heterogeneous microbial communities, referred to as the plant microbiota, which are recruited by plants and play crucial roles in promoting plant growth, aiding in resistance against pathogens and environmental stresses, thereby maintaining plant health. These micr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-11, Vol.951, p.175766, Article 175766
Hauptverfasser: Hao, Jing-Ru, Li, Yan, Ge, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In plant environments, there exist heterogeneous microbial communities, referred to as the plant microbiota, which are recruited by plants and play crucial roles in promoting plant growth, aiding in resistance against pathogens and environmental stresses, thereby maintaining plant health. These microorganisms, along with their genomes, collectively form the plant microbiome. Research on the plant microbiome can help unravel the intricate interactions between plants and microbes, providing a theoretical foundation to reduce pesticide use, enhance agricultural productivity, and promote environmental sustainability. Despite significant progress in the field of research, unresolved challenges persist due to ongoing technological limitations and the complexities inherent in studying microorganisms at small scales. Recently, synthetic community (SynCom) has emerged as a novel technique for microbiome research, showing promising prospects for applications in the plant microbiome field. This article systematically introduces the origin and distribution of plant microbiota, the processes of their recruitment and colonization, and the mechanisms underlying their beneficial functions for plants, from the aspects of composition, assembly, and function. Furthermore, we discuss the principles, applications, challenges, and prospects of SynCom for promoting plant health. [Display omitted] •Plant microbiomes: dynamics in composition, assembly, and functions across plant life.•Advancing agriculture: using microbial interactions to promote growth, enhance resistance, and confer tolerance.•SynCom technology: outlining construction principles and applications in plant microbiome research.•SynCom prospects: expanding research through diverse microbial integration and practical field application.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.175766