Cadmium neurotoxicity: Insights into behavioral effect and neurodegenerative diseases
Cadmium (Cd) induced neurotoxicity has become a growing concern due to its potential adverse effects on the Central Nervous System. Cd is a Heavy Metal (HM) that is released into the environment, through several industrial processes. It poses a risk to the health of the community by polluting air, w...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2024-09, Vol.364, p.143180, Article 143180 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cadmium (Cd) induced neurotoxicity has become a growing concern due to its potential adverse effects on the Central Nervous System. Cd is a Heavy Metal (HM) that is released into the environment, through several industrial processes. It poses a risk to the health of the community by polluting air, water, and soil. Cd builds up in the brain and other neural tissues, raising concerns about its effect on the nervous system due to its prolonged biological half-life. Cd can enter into the neurons, hence increasing the production of Reactive Oxygen Species (ROS) in them and impairing their antioxidant defenses. Cd disrupts the Calcium (Ca2+) balance in neurons, affects the function of the mitochondria, and triggers cell death pathways. As a result of these pathways, the path to the development of many neurological diseases affected by environmental factors, especially Cd, such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) is facilitated.
There are cognitive deficits associated with long exposure to Cd. Memory disorders are present in both animals and humans. Cd alters the brain's function and performance in critical periods. There are lifelong consequences of Cd exposure during critical brain development stages. The susceptibility to neurotoxic effects is increased by interactions with a variety of risk factors. Cd poses risks to neuronal function and behavior, potentially contributing to neurodegenerative diseases like Parkinson's disease (PD) and AD as well as cognitive issues. This article offers a comprehensive overview of Cd-induced neurotoxicity, encompassing risk assessment, adverse effect levels, and illuminating intricate pathways.
[Display omitted]
•Several neurodegenerative disorders like Alzheimer's are associated with Cd exposure.•Cd impacts mitochondrial activity and interferes with synaptic function.•Cd affects neurotransmitter release, calcium levels, and cognitive processes.•It isn't fully discovered how Cd affects neurodegenerative disorders.•It is essential for scientists to know the effects of Cd on the human body. |
---|---|
ISSN: | 0045-6535 1879-1298 1879-1298 |
DOI: | 10.1016/j.chemosphere.2024.143180 |