Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF-sprayed WC–Co coatings

Twelve commercially available WC–Co powders with different average WC grain sizes (0.2, 2, and 6 μm) and cobalt contents (8, 12, 17 and 25 wt.%) were sprayed on carbon steel substrates using High Velocity Oxy-Fuel (HVOF) spraying process. Hardness, Young's modulus, and fracture toughness of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2007-12, Vol.202 (3), p.509-521
Hauptverfasser: Chivavibul, Pornthep, Watanabe, Makoto, Kuroda, Seiji, Shinoda, Kentaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Twelve commercially available WC–Co powders with different average WC grain sizes (0.2, 2, and 6 μm) and cobalt contents (8, 12, 17 and 25 wt.%) were sprayed on carbon steel substrates using High Velocity Oxy-Fuel (HVOF) spraying process. Hardness, Young's modulus, and fracture toughness of the coatings were measured. While the hardness and Young's modulus decreased with increasing cobalt content from 1600 to 1100 Hv and from 400 to 300 GPa respectively, the fracture toughness remained in the range from 4 to 6 MPam 1/2. The coatings with 2 μm carbide showed lower hardness than those deposited from 0.2 and 6 μm carbide. These measured mechanical properties were discussed with the help of microstructures of the coatings investigated by scanning electron microscopy, X-ray diffraction and chemical analysis. Finally, the hardness of the binder phase in these coatings was estimated to range from 1000 to 1300 Hv by applying the mixture rule for composites to the experimental data, demonstrating that such hardening of the binder phase is a key factor affecting the mechanical properties of the coatings.
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2007.06.026