A new one-dimensional moving mesh method applied to the simulation of streamer discharges
Streamer front propagation involves steep gradients in charge density and electric field. Since the front has to be meshed with a sufficient number of points, adaptive meshing is essential for fast and accurate numerical simulations. In this paper a one-dimensional (1D) moving mesh method recently d...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2007-11, Vol.40 (21), p.6559-6570 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Streamer front propagation involves steep gradients in charge density and electric field. Since the front has to be meshed with a sufficient number of points, adaptive meshing is essential for fast and accurate numerical simulations. In this paper a one-dimensional (1D) moving mesh method recently developed by Tang and Tang (2003 SIAM J. Numer. Anal. 41 487-515) is successfully applied to the simulation of streamer discharge. One-and-half (1.5D) and two-dimensional (2D) simulations of streamer discharges in nitrogen at atmospheric pressure are presented. The moving mesh method is combined with the third order ULTIMATE QUICKEST scheme (Leonard 1991 Comput. Math. Appl. Mech. Eng. 88 17-74) to solve the advection part of the plasma continuity equations in a selection of classical problems in streamer simulation: point-to-plane and plane-to-plane electrode systems. The combination of the 1D moving mesh method and the high order scheme increases the accuracy of numerical solutions and reduces the computational time. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/40/21/016 |