Exploring antithrombotic mechanisms and effective constituents of Lagopsis supina using an integrated strategy based on network pharmacology, molecular docking, metabolomics, and experimental verification in rats
Thrombosis is a common cause of morbidity and mortality worldwide. Lagopsis supina (Stephan ex Willd.) Ikonn.-Gal. ex Knorring is an ancient Chinese herbal medicine used for treating thrombotic diseases. Nevertheless, the antithrombotic mechanisms and effective constituents of this plant have not be...
Gespeichert in:
Veröffentlicht in: | Journal of ethnopharmacology 2025-01, Vol.336, p.118717, Article 118717 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thrombosis is a common cause of morbidity and mortality worldwide. Lagopsis supina (Stephan ex Willd.) Ikonn.-Gal. ex Knorring is an ancient Chinese herbal medicine used for treating thrombotic diseases. Nevertheless, the antithrombotic mechanisms and effective constituents of this plant have not been clarified.
This work aimed to elucidate the pharmacodynamics and mechanism of L. supina against thrombosis.
Systematic network pharmacology was used to explore candidate effective constituents and hub targets of L. supina against thrombosis. Subsequently, the binding affinities of major constituents with core targets were verified by molecular docking analysis. Afterward, the therapeutic effect and mechanism were evaluated in an arteriovenous bypass thrombosis rat model. In addition, the serum metabolomics analysis was conducted using ultra-high performance liquid chromatography coupled with Q-Exactive mass spectrometry.
A total of 124 intersected targets of L. supina against thrombosis were predicted. Among them, 24 hub targets were obtained and their mainly associated with inflammation, angiogenesis, and thrombosis approaches. Furthermore, 9 candidate effective constituents, including (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol, aurantiamide, (22E,24R)-5α,8α-epidioxyergosta-6,9 (11),22-trien-3β-ol, lagopsinA, lagopsin C, 15-epi-lagopsin C, lagopsin D, 15-epi-lagopsin D, and lagopsin G in L. supina and 6 potential core targets (TLR-4, TNF-α, HIF-1α, VEGF-A, VEGFR-2, and CLEC1B) were acquired. Then, these 9 constituents demonstrated strong binding affinities with the 6 targets, with their lowest binding energies were all less than −5.0 kcal/mol. The antithrombotic effect and potential mechanisms of L. supina were verified, showing a positively associated with the inhibition of inflammation (TNF-α, IL-1β, IL-6, IL-8, and IL-10) and coagulation cascade (TT, APTT, PT, FIB, AT-III), promotion of angiogenesis (VEGF), suppression of platelet activation (TXB2, 6-keto-PGF1α, and TXB2/6-keto-PGF1α), and prevention of fibrinolysis (t-PA, u-PA, PAI-1, PAI-1/t-PA, PAI-1/u-PA, and PLG). Finally, 14 endogenous differential metabolites from serum samples of rats were intervened by L. supina based on untargeted metabolomics analysis, which were closely related to amino acid metabolism, inflammatory and angiogenic pathways.
Our integrated strategy based on network pharmacology, molecular docking, metabolomics, and in vivo experiments revealed for the first time that L. su |
---|---|
ISSN: | 0378-8741 1872-7573 1872-7573 |
DOI: | 10.1016/j.jep.2024.118717 |