Comprehensive Morphometric Analysis of the Rhomboid Fossa: Implications for Safe Entry Zones in Brainstem Surgery

The rhomboid fossa (RF) is a crucial anatomical region in brainstem surgery as it contains essential structures such as the reticular formation and cranial nerve nuclei. This study aimed to provide a detailed understanding of the complex microsurgical anatomy of the RF, which is vital for the safe e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World neurosurgery 2024-11, Vol.191, p.e206-e213
Hauptverfasser: Erturk, Mete, Demircubuk, Ibrahim, Candar, Esra, Sengul, Gulgun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rhomboid fossa (RF) is a crucial anatomical region in brainstem surgery as it contains essential structures such as the reticular formation and cranial nerve nuclei. This study aimed to provide a detailed understanding of the complex microsurgical anatomy of the RF, which is vital for the safe execution of neurosurgical procedures. Morphometric analysis was conducted on 45 adult human brainstems preserved in 10% formalin. Under 20× magnification, 13 linear measurements were performed using a millimeter graph to identify key anatomical landmarks. The RF measured 34.65 mm in length and 22.61 mm in width. The facial colliculus measured 4.26 mm in length on the left and 4.45 mm on the right, with corresponding widths of 3.77 mm and 3.50 mm. The distance between the sulcus limitans incisures was 9.52 mm, and the distance from the upper border of the medullary striae to obex was 11.53 mm. The proximity of the facial colliculus to the median sulcus was measured at 0.86 mm on the right and 0.96 mm on the left. Additionally, 2 safe entry zones—the suprafacial and infrafacial triangles—were identified, offering pathways to reach dorsal pons lesions through the RF. This comprehensive morphometric analysis of the RF enhances the understanding of its intricate anatomy. By describing safe entry zones, the suprafacial and infrafacial triangles, and providing precise measurements of key anatomical features, this study serves as a valuable resource for neurosurgeons in planning and executing brainstem surgeries.
ISSN:1878-8750
1878-8769
1878-8769
DOI:10.1016/j.wneu.2024.08.096