Mechanosensitive ion channels in glaucoma pathophysiology

Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vision research (Oxford) 2024-10, Vol.223, p.108473, Article 108473
Hauptverfasser: Garcia-Sanchez, Julian, Lin, Danting, Liu, Wendy W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve head, resulting in retinal ganglion cell death (RGC) in glaucoma. How mechanical stimuli are sensed and affect cellular physiology in the eye is unclear. Recent studies have shown that mechanosensitive ion channels are expressed in many ocular tissues relevant to glaucoma and may influence IOP regulation and RGC survival. Furthermore, variants in mechanosensitive ion channel genes may be associated with risk for primary open angle glaucoma. These findings suggest that mechanosensitive channels may be important mechanosensors mediating cellular responses to pressure signals in the eye. In this review, we focus on mechanosensitive ion channels from three major channel families—PIEZO, two-pore potassium and transient receptor potential channels. We review the key properties of these channels, their effects on cell function and physiology, and discuss their possible roles in glaucoma pathophysiology.
ISSN:0042-6989
1878-5646
1878-5646
DOI:10.1016/j.visres.2024.108473