Molecular characterization of reconstructed skin model by Raman microspectroscopy: Comparison with excised human skin

Human skin is directly exposed to different exogenous agents. Many research works have studied the diffusion, interactions, absorption mechanisms, and/or toxicity of these agents toward different cutaneous structures. With the use of living animals for such tests being more and more rejected; and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biopolymers 2007-11, Vol.87 (4), p.261-274
Hauptverfasser: Tfayli, Ali, Piot, Olivier, Draux, Florence, Pitre, Franck, Manfait, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human skin is directly exposed to different exogenous agents. Many research works have studied the diffusion, interactions, absorption mechanisms, and/or toxicity of these agents toward different cutaneous structures. With the use of living animals for such tests being more and more rejected; and the number of human volunteers being limited; different types of skin models are used. In the last few years, reconstructed epidermis from cell cultures has been frequently employed, and recent changes in the European chemical policy have approved and encouraged the use of these reconstructed models for skin‐related research works and assessments. Among the techniques used actually to study the skin, Raman microspectroscopy is a rising and powerful nondestructive technique that detects characteristic molecular vibrations. In this study, we created a spectral database to index the vibration peaks and bands of a well‐known reconstructed epidermis model, the Episkin®. The comparison with a native epidermis signal enabled us to put in evidence several spectral differences associated with molecular and structural differences between the skin and the reconstructed model, both maintained in living conditions. In addition to that, we have showed the feasibility of tracking the penetration of a pharmaceutical molecule through the Episkin model. © 2007 Wiley Periodicals, Inc. Biopolymers 87: 261–274, 2007. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
ISSN:0006-3525
1097-0282
DOI:10.1002/bip.20832