Integration of surface geophysical methods for fracture detection in crystalline bedrocks of southwestern Nigeria
The application of electrical imaging and very low frequency (VLF) electromagnetics was investigated for the purpose of delineating basement fracture zones, and to show how incorporating a priori information in numerical modelling would facilitate the location of fractured zones within a basement ro...
Gespeichert in:
Veröffentlicht in: | Hydrogeology journal 2006-11, Vol.14 (7), p.1284-1306 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of electrical imaging and very low frequency (VLF) electromagnetics was investigated for the purpose of delineating basement fracture zones, and to show how incorporating a priori information in numerical modelling would facilitate the location of fractured zones within a basement rock more precisely. To this end, direct current (DC) dipole-dipole resistivity and VLF modelling and inversion experiments were carried out to evaluate the efficacy of the methods in detecting low-resistivity fracture zones in a typical crystalline basement rock that is favourable for groundwater accumulation. Most wells drilled in such an environment usually have low yields. Results of the numerical experiment generally indicate that fractures covered by moderate overburden, and having considerable depth, extent, and thickness compared to the depth of fracture burial, produce good responses resulting in high-resolution resistivity images. Lower resolution resistivity images were obtained as the thickness of the overburden increased. Also, the model investigations indicate that width of the fracture zone plays a major role in controlling image resolution. Conclusions from the synthetic modelling were confirmed by resistivity and VLF data gathered across a suspected fault in a hard rock terrain of southwestern Nigeria. The results from the field data are in general agreement with the numerical modelling experiments.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1431-2174 1435-0157 |
DOI: | 10.1007/s10040-006-0051-2 |