Facile Synthesis of Ln‐Doped Hydrogen‐Bonded Organic Frameworks with Rare‐Earth‐Characteristic Long Persistent Luminescence

Tunable luminescence‐assisted information storage and encryption holds increasing significance in today's society. A promising approach to incorporating the benefits of both organic long persistent luminescent (LPL) materials and rare‐earth (RE) luminescence lies in utilizing organic host mater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2024-12, Vol.30 (68), p.e202402806-n/a
Hauptverfasser: Wang, Zheng, Pan, Jun‐Jie, Chen, Xin‐Qi, Li, Meng‐Yang, Wang, Shi‐Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tunable luminescence‐assisted information storage and encryption holds increasing significance in today's society. A promising approach to incorporating the benefits of both organic long persistent luminescent (LPL) materials and rare‐earth (RE) luminescence lies in utilizing organic host materials to sensitize RE luminescence, as well as employing Förster resonance energy transfer from hydrogen‐bonded organic framework (HOF) phosphorescence to RE compound luminescence. This work introduces a one‐pot, in situ pyrolytic condensation method, achieved through high‐temperature melting calcination, to synthesize lanthanide ion‐doped HOF materials. This method circumvents the drawback of molecular triplet energy annihilation, enabling the creation of organic LPL materials with RE characteristics. The HOF material serves as the host, exhibiting blue phosphorescence and cyan LPL. By fine‐tuning the doping amount, the composite material U‐Tb‐100 achieves green LPL with a luminescent quantum yield of 56.4 %, and an LPL duration of approximately 2–3 s, demonstrating tunable persistence. Single‐crystal X‐ray diffraction, spectral analysis, and theoretical calculation unveil that U‐Tb‐100 exhibits exceptional quantum yield and long‐lived luminescence primarily due to the efficient sensitization of U monomer to RE ions and the PRET process between U and RE complexes. This ingenious strategy not only expands the repertoire of HOF materials but also facilitates the design of multifunctional LPL materials. In this study, Ln‐doped hydrogen‐bonded organic framework (HOF) materials, which exhibit long‐lasting and narrow‐band LPL properties, were successfully synthesized through a facile method, offering novel solutions for color tuning of organic LPL materials.
ISSN:0947-6539
1521-3765
1521-3765
DOI:10.1002/chem.202402806