Ant colony optimization combined with taboo search for the job shop scheduling problem

In this paper, we present a hybrid algorithm combining ant colony optimization algorithm with the taboo search algorithm for the classical job shop scheduling problem. Instead of using the conventional construction approach to construct feasible schedules, the proposed ant colony optimization algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2008-04, Vol.35 (4), p.1030-1046
Hauptverfasser: Huang, Kuo-Ling, Liao, Ching-Jong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a hybrid algorithm combining ant colony optimization algorithm with the taboo search algorithm for the classical job shop scheduling problem. Instead of using the conventional construction approach to construct feasible schedules, the proposed ant colony optimization algorithm employs a novel decomposition method inspired by the shifting bottleneck procedure, and a mechanism of occasional reoptimizations of partial schedules. Besides, a taboo search algorithm is embedded to improve the solution quality. We run the proposed algorithm on 101 benchmark instances and obtain competitive results and a new best upper bound for one open benchmark instance is found.
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2006.07.003