Nitric Oxide as an Efficient Antimicrobial Treatment for Second-Degree Burn Wounds

Nitric oxide (NO) is a lipophilic gas with potent antimicrobial activity. Several in vitro and in vivo studies have demonstrated the broad-spectrum antimicrobial activity of NO-releasing compounds against bacteria, viruses, and parasites. The objective of this study was to assess the efficacy of top...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Military medicine 2024-08
Hauptverfasser: Davis, Stephen C, Gil, Joel, Solis, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitric oxide (NO) is a lipophilic gas with potent antimicrobial activity. Several in vitro and in vivo studies have demonstrated the broad-spectrum antimicrobial activity of NO-releasing compounds against bacteria, viruses, and parasites. The objective of this study was to assess the efficacy of topical NO formations with sustained release on microbial reduction in wounds. Swine was used as the preclinical animal model because of the similarities of porcine skin to human skin. Second-degree burn wounds were created in 3 pigs and then inoculated with Methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, or Candida albicans and covered with polyurethane film dressings to create biofilms. After 48 hours, wounds were then treated daily and then recovered for the bacterial burden assessments. Statistical analysis was performed using IBM SPSS statistics 27 using one-way ANOVA. All treatments significantly reduced (P ≤ .05) the bacterial counts between assessment days 4 and 7. Wounds treated with the NVN4000 (1.8%) exhibited greater than 99.7% bacterial reduction on days 4 and 7. Significant differences (P ≤ .05) were observed in wounds treated with NVN4000 (1.8%) compared to silver sulfadiazine. These studies demonstrate that topical NO-releasing formulations effectively reduce the microbial burden of several microorganisms and exhibit superior antimicrobial efficacy compared to silver sulfadiazine in the porcine wound model.
ISSN:0026-4075
1930-613X
1930-613X
DOI:10.1093/milmed/usae402