Braess's Paradox Analog in Physical Networks of Optimal Exploration
In stochastic exploration of geometrically embedded graphs, intuition suggests that providing a shortcut between a pair of nodes reduces the mean first passage time of the entire graph. Counterintuitively, we find a Braess's paradox analog. For regular diffusion, shortcuts can worsen the overal...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-08, Vol.133 (6), p.067401, Article 067401 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In stochastic exploration of geometrically embedded graphs, intuition suggests that providing a shortcut between a pair of nodes reduces the mean first passage time of the entire graph. Counterintuitively, we find a Braess's paradox analog. For regular diffusion, shortcuts can worsen the overall search efficiency of the network, although they bridge topologically distant nodes. We propose an optimization scheme under which each edge adapts its conductivity to minimize the graph's search time. The optimization reveals a relationship between the structure and diffusion exponent and a crossover from dense to sparse graphs as the exponent increases. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.133.067401 |