Microstructural Changes During Internal Oxidation of a Ag-Sn Alloy
Electrical contact materials are expected to combine improved mechanical and physical properties with good corrosion resistance at increased temperatures. One of the most widely used groups of contact materials are internally oxidized dispersion hardened silver alloys. The principle of their product...
Gespeichert in:
Veröffentlicht in: | Praktische Metallographie 2007-10, Vol.44 (10), p.464-475 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrical contact materials are expected to combine improved mechanical and physical properties with good corrosion resistance at increased temperatures. One of the most widely used groups of contact materials are internally oxidized dispersion hardened silver alloys. The principle of their production involves selective oxidation of less noble solute elements (usually Mg, Al, Sn, Cd and Zn) forming the fine dispersion of oxide particles in the solvent silver matrix. In this study the internal oxidation of dilute silver alloy containing 2 at. % of tin was extensively investigated. The morphological evolution of the alloy and the internal oxidation kinetics were determined by several metallographic examinations and in-situ electrical resistance measurements in the air atmosphere and in the temperature range from 600°C to 800°C. The results of experiments and their analyses show that the microstructural changes during internal oxidation of Ag-Sn alloy are strongly dependent on the annealing temperature. At the highest temperatures the perfectly dispersive distribution of the oxide particles SnO2 in the silver matrix was found, while at lower temperatures the formation of inner oxide bands and distribution of oxide particles along the grain boundaries is predominate. |
---|---|
ISSN: | 0032-678X 2195-8599 |
DOI: | 10.3139/147.100357 |