MetDecode: methylation-based deconvolution of cell-free DNA for noninvasive multi-cancer typing

Abstract Motivation Circulating-cell free DNA (cfDNA) is widely explored as a noninvasive biomarker for cancer screening and diagnosis. The ability to decode the cells of origin in cfDNA would provide biological insights into pathophysiological mechanisms, aiding in cancer characterization and direc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2024-09, Vol.40 (9)
Hauptverfasser: Passemiers, Antoine, Tuveri, Stefania, Sudhakaran, Dhanya, Jatsenko, Tatjana, Laga, Tina, Punie, Kevin, Hatse, Sigrid, Tejpar, Sabine, Coosemans, An, Van Nieuwenhuysen, Els, Timmerman, Dirk, Floris, Giuseppe, Van Rompuy, Anne-Sophie, Sagaert, Xavier, Testa, Antonia, Ficherova, Daniela, Raimondi, Daniele, Amant, Frederic, Lenaerts, Liesbeth, Moreau, Yves, Vermeesch, Joris R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation Circulating-cell free DNA (cfDNA) is widely explored as a noninvasive biomarker for cancer screening and diagnosis. The ability to decode the cells of origin in cfDNA would provide biological insights into pathophysiological mechanisms, aiding in cancer characterization and directing clinical management and follow-up. Results We developed a DNA methylation signature-based deconvolution algorithm, MetDecode, for cancer tissue origin identification. We built a reference atlas exploiting de novo and published whole-genome methylation sequencing data for colorectal, breast, ovarian, and cervical cancer, and blood-cell-derived entities. MetDecode models the contributors absent in the atlas with methylation patterns learnt on-the-fly from the input cfDNA methylation profiles. In addition, our model accounts for the coverage of each marker region to alleviate potential sources of noise. In-silico experiments showed a limit of detection down to 2.88% of tumor tissue contribution in cfDNA. MetDecode produced Pearson correlation coefficients above 0.95 and outperformed other methods in simulations (P 
ISSN:1367-4811
1367-4803
1367-4811
DOI:10.1093/bioinformatics/btae522