AI-based epidemic and pandemic early warning systems: A systematic scoping review
Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Obje...
Gespeichert in:
Veröffentlicht in: | Health Informatics Journal 2024-07, Vol.30 (3), p.14604582241275844 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 14604582241275844 |
container_title | Health Informatics Journal |
container_volume | 30 |
creator | El Morr, Christo Ozdemir, Deniz Asdaah, Yasmeen Saab, Antoine El-Lahib, Yahya Sokhn, Elie Salem |
description | Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development. |
doi_str_mv | 10.1177/14604582241275844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096279805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14604582241275844</sage_id><sourcerecordid>3096279805</sourcerecordid><originalsourceid>FETCH-LOGICAL-p251t-8713bab78c8a8240915ac30acd3b909141660d12faa8a09aaf11bfe13132b8023</originalsourceid><addsrcrecordid>eNplkUtLw0AQxxdRbK1-AC8S8OIldWcf2Y23UqoWCiLoOcwmm5KSl9nE0m_v1lYEvczMn_kxT0KugU4BlLoHEVEhNWMCmJJaiBMyBiUgZBrg1Mc-H-6BEblwbkMp5VTyczLiMSgmpRyT19kyNOhsFti2yGxVpAHWWdB68y0sduUu2GJXF_U6cDvX28o9BLNjiL1nXNq0-2xnPwu7vSRnOZbOXh39hLw_Lt7mz-Hq5Wk5n63ClknoQ62AGzRKpxo1EzQGiSmnmGbcxF4JiCKaAcsRNdIYMQcwuQUOnBlNGZ-Qu0Pdtms-Buv6pCpcassSa9sMLuE0jpiKtd94Qm7_oJtm6Go_XcIBfCMttPbUzZEaTGWzpO2KCrtd8nMsD0wPgMO1_S0BNNl_I_n3Df4FzQR3hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111668488</pqid></control><display><type>article</type><title>AI-based epidemic and pandemic early warning systems: A systematic scoping review</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SAGE Journals</source><creator>El Morr, Christo ; Ozdemir, Deniz ; Asdaah, Yasmeen ; Saab, Antoine ; El-Lahib, Yahya ; Sokhn, Elie Salem</creator><creatorcontrib>El Morr, Christo ; Ozdemir, Deniz ; Asdaah, Yasmeen ; Saab, Antoine ; El-Lahib, Yahya ; Sokhn, Elie Salem</creatorcontrib><description>Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.</description><identifier>ISSN: 1460-4582</identifier><identifier>ISSN: 1741-2811</identifier><identifier>EISSN: 1741-2811</identifier><identifier>DOI: 10.1177/14604582241275844</identifier><identifier>PMID: 39172555</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial Intelligence ; Disease Outbreaks - prevention & control ; Epidemics ; Humans ; Machine Learning ; Pandemics ; Pandemics - prevention & control ; Public health</subject><ispartof>Health Informatics Journal, 2024-07, Vol.30 (3), p.14604582241275844</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0006-0068-7465 ; 0000-0003-0673-0875 ; 0000-0001-6287-3438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/14604582241275844$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/14604582241275844$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>313,314,780,784,792,864,21966,27853,27922,27924,27925,44945,45333</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39172555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El Morr, Christo</creatorcontrib><creatorcontrib>Ozdemir, Deniz</creatorcontrib><creatorcontrib>Asdaah, Yasmeen</creatorcontrib><creatorcontrib>Saab, Antoine</creatorcontrib><creatorcontrib>El-Lahib, Yahya</creatorcontrib><creatorcontrib>Sokhn, Elie Salem</creatorcontrib><title>AI-based epidemic and pandemic early warning systems: A systematic scoping review</title><title>Health Informatics Journal</title><addtitle>Health Informatics J</addtitle><description>Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.</description><subject>Artificial Intelligence</subject><subject>Disease Outbreaks - prevention & control</subject><subject>Epidemics</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Pandemics</subject><subject>Pandemics - prevention & control</subject><subject>Public health</subject><issn>1460-4582</issn><issn>1741-2811</issn><issn>1741-2811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><recordid>eNplkUtLw0AQxxdRbK1-AC8S8OIldWcf2Y23UqoWCiLoOcwmm5KSl9nE0m_v1lYEvczMn_kxT0KugU4BlLoHEVEhNWMCmJJaiBMyBiUgZBrg1Mc-H-6BEblwbkMp5VTyczLiMSgmpRyT19kyNOhsFti2yGxVpAHWWdB68y0sduUu2GJXF_U6cDvX28o9BLNjiL1nXNq0-2xnPwu7vSRnOZbOXh39hLw_Lt7mz-Hq5Wk5n63ClknoQ62AGzRKpxo1EzQGiSmnmGbcxF4JiCKaAcsRNdIYMQcwuQUOnBlNGZ-Qu0Pdtms-Buv6pCpcassSa9sMLuE0jpiKtd94Qm7_oJtm6Go_XcIBfCMttPbUzZEaTGWzpO2KCrtd8nMsD0wPgMO1_S0BNNl_I_n3Df4FzQR3hA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>El Morr, Christo</creator><creator>Ozdemir, Deniz</creator><creator>Asdaah, Yasmeen</creator><creator>Saab, Antoine</creator><creator>El-Lahib, Yahya</creator><creator>Sokhn, Elie Salem</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>E3H</scope><scope>F2A</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0006-0068-7465</orcidid><orcidid>https://orcid.org/0000-0003-0673-0875</orcidid><orcidid>https://orcid.org/0000-0001-6287-3438</orcidid></search><sort><creationdate>20240701</creationdate><title>AI-based epidemic and pandemic early warning systems: A systematic scoping review</title><author>El Morr, Christo ; Ozdemir, Deniz ; Asdaah, Yasmeen ; Saab, Antoine ; El-Lahib, Yahya ; Sokhn, Elie Salem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p251t-8713bab78c8a8240915ac30acd3b909141660d12faa8a09aaf11bfe13132b8023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Disease Outbreaks - prevention & control</topic><topic>Epidemics</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Pandemics</topic><topic>Pandemics - prevention & control</topic><topic>Public health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Morr, Christo</creatorcontrib><creatorcontrib>Ozdemir, Deniz</creatorcontrib><creatorcontrib>Asdaah, Yasmeen</creatorcontrib><creatorcontrib>Saab, Antoine</creatorcontrib><creatorcontrib>El-Lahib, Yahya</creatorcontrib><creatorcontrib>Sokhn, Elie Salem</creatorcontrib><collection>SAGE Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>MEDLINE - Academic</collection><jtitle>Health Informatics Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Morr, Christo</au><au>Ozdemir, Deniz</au><au>Asdaah, Yasmeen</au><au>Saab, Antoine</au><au>El-Lahib, Yahya</au><au>Sokhn, Elie Salem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-based epidemic and pandemic early warning systems: A systematic scoping review</atitle><jtitle>Health Informatics Journal</jtitle><addtitle>Health Informatics J</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><spage>14604582241275844</spage><pages>14604582241275844-</pages><issn>1460-4582</issn><issn>1741-2811</issn><eissn>1741-2811</eissn><abstract>Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>39172555</pmid><doi>10.1177/14604582241275844</doi><orcidid>https://orcid.org/0009-0006-0068-7465</orcidid><orcidid>https://orcid.org/0000-0003-0673-0875</orcidid><orcidid>https://orcid.org/0000-0001-6287-3438</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1460-4582 |
ispartof | Health Informatics Journal, 2024-07, Vol.30 (3), p.14604582241275844 |
issn | 1460-4582 1741-2811 1741-2811 |
language | eng |
recordid | cdi_proquest_miscellaneous_3096279805 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; SAGE Journals |
subjects | Artificial Intelligence Disease Outbreaks - prevention & control Epidemics Humans Machine Learning Pandemics Pandemics - prevention & control Public health |
title | AI-based epidemic and pandemic early warning systems: A systematic scoping review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-based%20epidemic%20and%20pandemic%20early%20warning%20systems:%20A%20systematic%20scoping%20review&rft.jtitle=Health%20Informatics%20Journal&rft.au=El%20Morr,%20Christo&rft.date=2024-07-01&rft.volume=30&rft.issue=3&rft.spage=14604582241275844&rft.pages=14604582241275844-&rft.issn=1460-4582&rft.eissn=1741-2811&rft_id=info:doi/10.1177/14604582241275844&rft_dat=%3Cproquest_pubme%3E3096279805%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111668488&rft_id=info:pmid/39172555&rft_sage_id=10.1177_14604582241275844&rfr_iscdi=true |