AI-based epidemic and pandemic early warning systems: A systematic scoping review

Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Obje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health Informatics Journal 2024-07, Vol.30 (3), p.14604582241275844
Hauptverfasser: El Morr, Christo, Ozdemir, Deniz, Asdaah, Yasmeen, Saab, Antoine, El-Lahib, Yahya, Sokhn, Elie Salem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 14604582241275844
container_title Health Informatics Journal
container_volume 30
creator El Morr, Christo
Ozdemir, Deniz
Asdaah, Yasmeen
Saab, Antoine
El-Lahib, Yahya
Sokhn, Elie Salem
description Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.
doi_str_mv 10.1177/14604582241275844
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096279805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14604582241275844</sage_id><sourcerecordid>3096279805</sourcerecordid><originalsourceid>FETCH-LOGICAL-p251t-8713bab78c8a8240915ac30acd3b909141660d12faa8a09aaf11bfe13132b8023</originalsourceid><addsrcrecordid>eNplkUtLw0AQxxdRbK1-AC8S8OIldWcf2Y23UqoWCiLoOcwmm5KSl9nE0m_v1lYEvczMn_kxT0KugU4BlLoHEVEhNWMCmJJaiBMyBiUgZBrg1Mc-H-6BEblwbkMp5VTyczLiMSgmpRyT19kyNOhsFti2yGxVpAHWWdB68y0sduUu2GJXF_U6cDvX28o9BLNjiL1nXNq0-2xnPwu7vSRnOZbOXh39hLw_Lt7mz-Hq5Wk5n63ClknoQ62AGzRKpxo1EzQGiSmnmGbcxF4JiCKaAcsRNdIYMQcwuQUOnBlNGZ-Qu0Pdtms-Buv6pCpcassSa9sMLuE0jpiKtd94Qm7_oJtm6Go_XcIBfCMttPbUzZEaTGWzpO2KCrtd8nMsD0wPgMO1_S0BNNl_I_n3Df4FzQR3hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111668488</pqid></control><display><type>article</type><title>AI-based epidemic and pandemic early warning systems: A systematic scoping review</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SAGE Journals</source><creator>El Morr, Christo ; Ozdemir, Deniz ; Asdaah, Yasmeen ; Saab, Antoine ; El-Lahib, Yahya ; Sokhn, Elie Salem</creator><creatorcontrib>El Morr, Christo ; Ozdemir, Deniz ; Asdaah, Yasmeen ; Saab, Antoine ; El-Lahib, Yahya ; Sokhn, Elie Salem</creatorcontrib><description>Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.</description><identifier>ISSN: 1460-4582</identifier><identifier>ISSN: 1741-2811</identifier><identifier>EISSN: 1741-2811</identifier><identifier>DOI: 10.1177/14604582241275844</identifier><identifier>PMID: 39172555</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial Intelligence ; Disease Outbreaks - prevention &amp; control ; Epidemics ; Humans ; Machine Learning ; Pandemics ; Pandemics - prevention &amp; control ; Public health</subject><ispartof>Health Informatics Journal, 2024-07, Vol.30 (3), p.14604582241275844</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0006-0068-7465 ; 0000-0003-0673-0875 ; 0000-0001-6287-3438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/14604582241275844$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/14604582241275844$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>313,314,780,784,792,864,21966,27853,27922,27924,27925,44945,45333</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39172555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El Morr, Christo</creatorcontrib><creatorcontrib>Ozdemir, Deniz</creatorcontrib><creatorcontrib>Asdaah, Yasmeen</creatorcontrib><creatorcontrib>Saab, Antoine</creatorcontrib><creatorcontrib>El-Lahib, Yahya</creatorcontrib><creatorcontrib>Sokhn, Elie Salem</creatorcontrib><title>AI-based epidemic and pandemic early warning systems: A systematic scoping review</title><title>Health Informatics Journal</title><addtitle>Health Informatics J</addtitle><description>Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.</description><subject>Artificial Intelligence</subject><subject>Disease Outbreaks - prevention &amp; control</subject><subject>Epidemics</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Pandemics</subject><subject>Pandemics - prevention &amp; control</subject><subject>Public health</subject><issn>1460-4582</issn><issn>1741-2811</issn><issn>1741-2811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><recordid>eNplkUtLw0AQxxdRbK1-AC8S8OIldWcf2Y23UqoWCiLoOcwmm5KSl9nE0m_v1lYEvczMn_kxT0KugU4BlLoHEVEhNWMCmJJaiBMyBiUgZBrg1Mc-H-6BEblwbkMp5VTyczLiMSgmpRyT19kyNOhsFti2yGxVpAHWWdB68y0sduUu2GJXF_U6cDvX28o9BLNjiL1nXNq0-2xnPwu7vSRnOZbOXh39hLw_Lt7mz-Hq5Wk5n63ClknoQ62AGzRKpxo1EzQGiSmnmGbcxF4JiCKaAcsRNdIYMQcwuQUOnBlNGZ-Qu0Pdtms-Buv6pCpcassSa9sMLuE0jpiKtd94Qm7_oJtm6Go_XcIBfCMttPbUzZEaTGWzpO2KCrtd8nMsD0wPgMO1_S0BNNl_I_n3Df4FzQR3hA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>El Morr, Christo</creator><creator>Ozdemir, Deniz</creator><creator>Asdaah, Yasmeen</creator><creator>Saab, Antoine</creator><creator>El-Lahib, Yahya</creator><creator>Sokhn, Elie Salem</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>E3H</scope><scope>F2A</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0006-0068-7465</orcidid><orcidid>https://orcid.org/0000-0003-0673-0875</orcidid><orcidid>https://orcid.org/0000-0001-6287-3438</orcidid></search><sort><creationdate>20240701</creationdate><title>AI-based epidemic and pandemic early warning systems: A systematic scoping review</title><author>El Morr, Christo ; Ozdemir, Deniz ; Asdaah, Yasmeen ; Saab, Antoine ; El-Lahib, Yahya ; Sokhn, Elie Salem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p251t-8713bab78c8a8240915ac30acd3b909141660d12faa8a09aaf11bfe13132b8023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Disease Outbreaks - prevention &amp; control</topic><topic>Epidemics</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Pandemics</topic><topic>Pandemics - prevention &amp; control</topic><topic>Public health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Morr, Christo</creatorcontrib><creatorcontrib>Ozdemir, Deniz</creatorcontrib><creatorcontrib>Asdaah, Yasmeen</creatorcontrib><creatorcontrib>Saab, Antoine</creatorcontrib><creatorcontrib>El-Lahib, Yahya</creatorcontrib><creatorcontrib>Sokhn, Elie Salem</creatorcontrib><collection>SAGE Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>MEDLINE - Academic</collection><jtitle>Health Informatics Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Morr, Christo</au><au>Ozdemir, Deniz</au><au>Asdaah, Yasmeen</au><au>Saab, Antoine</au><au>El-Lahib, Yahya</au><au>Sokhn, Elie Salem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-based epidemic and pandemic early warning systems: A systematic scoping review</atitle><jtitle>Health Informatics Journal</jtitle><addtitle>Health Informatics J</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><spage>14604582241275844</spage><pages>14604582241275844-</pages><issn>1460-4582</issn><issn>1741-2811</issn><eissn>1741-2811</eissn><abstract>Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>39172555</pmid><doi>10.1177/14604582241275844</doi><orcidid>https://orcid.org/0009-0006-0068-7465</orcidid><orcidid>https://orcid.org/0000-0003-0673-0875</orcidid><orcidid>https://orcid.org/0000-0001-6287-3438</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1460-4582
ispartof Health Informatics Journal, 2024-07, Vol.30 (3), p.14604582241275844
issn 1460-4582
1741-2811
1741-2811
language eng
recordid cdi_proquest_miscellaneous_3096279805
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; SAGE Journals
subjects Artificial Intelligence
Disease Outbreaks - prevention & control
Epidemics
Humans
Machine Learning
Pandemics
Pandemics - prevention & control
Public health
title AI-based epidemic and pandemic early warning systems: A systematic scoping review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-based%20epidemic%20and%20pandemic%20early%20warning%20systems:%20A%20systematic%20scoping%20review&rft.jtitle=Health%20Informatics%20Journal&rft.au=El%20Morr,%20Christo&rft.date=2024-07-01&rft.volume=30&rft.issue=3&rft.spage=14604582241275844&rft.pages=14604582241275844-&rft.issn=1460-4582&rft.eissn=1741-2811&rft_id=info:doi/10.1177/14604582241275844&rft_dat=%3Cproquest_pubme%3E3096279805%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111668488&rft_id=info:pmid/39172555&rft_sage_id=10.1177_14604582241275844&rfr_iscdi=true