AI-based epidemic and pandemic early warning systems: A systematic scoping review

Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Obje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health Informatics Journal 2024-07, Vol.30 (3), p.14604582241275844
Hauptverfasser: El Morr, Christo, Ozdemir, Deniz, Asdaah, Yasmeen, Saab, Antoine, El-Lahib, Yahya, Sokhn, Elie Salem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.
ISSN:1460-4582
1741-2811
1741-2811
DOI:10.1177/14604582241275844