Three odorant-binding proteins of small hive beetles, Aethina tumida, participate in the response of bee colony volatiles
Aethina tumida (small hive beetle, SHB) is a rapidly spreading invasive parasite of bee colonies. The olfactory system plays a key role in insect behavior, and odorant-binding proteins (OBPs) are involved in the first step of the olfactory signal transduction pathway and the detection of host volati...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-10, Vol.278 (Pt 3), p.134905, Article 134905 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aethina tumida (small hive beetle, SHB) is a rapidly spreading invasive parasite of bee colonies. The olfactory system plays a key role in insect behavior, and odorant-binding proteins (OBPs) are involved in the first step of the olfactory signal transduction pathway and the detection of host volatiles. However, the olfactory mechanism of OBPs in SHB-localized bee colonies is unclear. In this study, electroantennogram (EAG) and behavioral bioassay showed that only three compounds (2-heptanone, ocimene, and ethyl palmitate) from bee colonies triggered high electrophysiological and behavioral responses. Three antenna-specific OBP genes (OBP6, OBP11, and OBP19) were identified, and they were significantly expressed on adult days 6–7. Furthermore, by combining RNA interference (RNAi) with EAG, olfactometer bioassay, competitive fluorescence binding assays, and molecular docking, we found that these three OBP genes were involved in the recognition of 2-heptanone and ethyl palmitate, and AtumOBP6 is also involved in the recognition of ocimene. These data indicate that AtumOBP6, AtumOBP11, and AtumOBP19 play an important role in the olfactory response to bee colony volatiles. Our results provide new insights into the functions of the OBP families in A. tumida and help to explore more potential target genes for environmentally friendly pest control strategies.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.134905 |