Presynaptic neurons self-tune by inversely coupling neurotransmitter release with the abundance of CaV2 voltage-gated Ca2+ channels

The abundance of CaV2 voltage-gated calcium channels is linked to presynaptic homeostatic plasticity (PHP), a process that recalibrates synaptic strength to maintain the stability of neural circuits. However, the molecular and cellular mechanisms governing PHP and CaV2 channels are not completely un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-08, Vol.121 (35), p.1
Hauptverfasser: Xiong, Ame, Richmond, Janet E, Kim, Hongkyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The abundance of CaV2 voltage-gated calcium channels is linked to presynaptic homeostatic plasticity (PHP), a process that recalibrates synaptic strength to maintain the stability of neural circuits. However, the molecular and cellular mechanisms governing PHP and CaV2 channels are not completely understood. Here, we uncover a previously not described form of PHP in Caenorhabditis elegans, revealing an inverse regulatory relationship between the efficiency of neurotransmitter release and the abundance of UNC-2/CaV2 channels. Gain-of-function unc-2SL(S240L) mutants, which carry a mutation analogous to the one causing familial hemiplegic migraine type 1 in humans, showed markedly reduced channel abundance despite increased channel functionality. Reducing synaptic release in these unc-2SL(S240L) mutants restored channel levels to those observed in wild-type animals. Conversely, loss-of-function unc-2DA(D726A) mutants, which harbor the D726A mutation in the channel pore, exhibited a marked increase in channel abundance. Enhancing synaptic release in unc-2DA mutants reversed this increase in channel levels. Importantly, this homeostatic regulation of UNC-2 channel levels is accompanied by the structural remodeling of the active zone (AZ); specifically, unc-2DA mutants, which exhibit increased channel abundance, showed parallel increases in select AZ proteins. Finally, our forward genetic screen revealed that WWP-1, a HECT family E3 ubiquitin ligase, is a key homeostatic mediator that removes UNC-2 from synapses. These findings highlight a self-tuning PHP regulating UNC-2/CaV2 channel abundance along with AZ reorganization, ensuring synaptic strength and stability.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.2404969121