Exploring emission spatiotemporal pattern and potential reduction capacity in China's aviation sector: Flight trajectory optimization perspective

China's rapid expansion of civil aviation has led to an increase in pollution-related issues, causing adverse health effects on populations near airports and downwind. Accurately quantifying aviation emissions is essential for effective emission management. Here, we developed a high-resolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-11, Vol.951, p.175558, Article 175558
Hauptverfasser: Ma, Simeng, Wang, Xuan, Han, Bo, Zhao, Jingbo, Guan, Zhongyi, Wang, Jinlong, Zhang, Yufen, Liu, Baoshuang, Yu, Jian, Feng, Yinchang, Hopke, Philip K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:China's rapid expansion of civil aviation has led to an increase in pollution-related issues, causing adverse health effects on populations near airports and downwind. Accurately quantifying aviation emissions is essential for effective emission management. Here, we developed a high-resolution aviation emissions inventory for China by employing a bottom-up approach that relied on daily flight schedules. By using the Aeronautical Information Publication (AIP) to reproduce real-world flight routes rather than conventional great-circle routes, we improved the accuracy of emissions and investigated the potential for reducing these emissions. Our findings demonstrated substantial variations in domestic civil aviation emissions both spatially and temporally. Emissions peaked in most provinces during Chinese holidays, particularly the Chinese Lunar New Year and summer holidays, highlighting the importance of detailed activity data for accurate emissions calculations. Therefore, we recommend extensive utilization of real-world flight routes, particularly in areas with limited Automatic Dependent Surveillance-Broadcast (ADS-B) coverage since they provide more accurate representations of actual flight trajectories. Our study also identified regions like Shaanxi, Sichuan, Beijing, and their surroundings having considerable potential for emission reduction due to substantial deviations from great-circle routes. This approach can enhance the accuracy and spatiotemporal resolution of aviation emissions at national and global scales throughout the year, without relying on extensive, long-term real-time flight trajectories. Additionally, it provides a unique way to quantify the potential for emission reductions across provinces in civil aviation, ultimately contributing to mitigating pollution-related health impacts from aviation emissions and promoting a more sustainable aviation industry. [Display omitted] •A high-resolution aviation emissions inventory for China is developed.•The emission inventory accuracy is improved by mapping of real-world flight routes.•The importance of detailed activity data for accurate emissions is recommended.•Potential of aviation emission reduction is explored by difference in airline routes.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.175558