An active approach to spoken language processing

State of the art data-driven speech and language processing systems require a large amount of human intervention ranging from data annotation to system prototyping. In the traditional supervised passive approach , the system is trained on a given number of annotated data samples and evaluated using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on speech and language processing 2006-10, Vol.3 (3), p.1-31
Hauptverfasser: Hakkani-Tür, Dilek, Riccardi, Giuseppe, Tur, Gokhan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:State of the art data-driven speech and language processing systems require a large amount of human intervention ranging from data annotation to system prototyping. In the traditional supervised passive approach , the system is trained on a given number of annotated data samples and evaluated using a separate test set. Then more data is collected arbitrarily, annotated, and the whole cycle is repeated. In this article, we propose the active approach where the system itself selects its own training data, evaluates itself and re-trains when necessary. We first employ active learning which aims to automatically select the examples that are likely to be the most informative for a given task. We use active learning for both selecting the examples to label and the examples to re-label in order to correct labeling errors. Furthermore, the system automatically evaluates itself using active evaluation to keep track of the unexpected events and decides on-demand to label more examples. The active approach enables dynamic adaptation of spoken language processing systems to unseen or unexpected events for nonstationary input while reducing the manual annotation effort significantly. We have evaluated the active approach with the AT&T spoken dialog system used for customer care applications. In this article, we present our results for both automatic speech recognition and spoken language understanding.
ISSN:1550-4875
1550-4883
DOI:10.1145/1177055.1177056