Multiple Graph Alignment for the Structural Analysis of Protein Active Sites
Graphs are frequently used to describe the geometry and also the physicochemical composition of protein active sites. Here, the concept of graph alignment as a novel method for the structural analysis of protein binding pockets is presented. Using inexact graph-matching techniques, one is able to id...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2007-04, Vol.4 (2), p.310-320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphs are frequently used to describe the geometry and also the physicochemical composition of protein active sites. Here, the concept of graph alignment as a novel method for the structural analysis of protein binding pockets is presented. Using inexact graph-matching techniques, one is able to identify both conserved areas and regions of difference among different binding pockets. Thus, using multiple graph alignments, it is possible to characterize functional protein families and to examine differences among related protein families independent of sequence or fold homology. Optimized algorithms are described for the efficient calculation of multiple graph alignments for the analysis of physicochemical descriptors representing protein binding pockets. Additionally, it is shown how the calculated graph alignments can be analyzed to identify structural features that are characteristic for a given protein family and also features that are discriminative among related families. The methods are applied to a substantial high-quality subset of the PDB database and their ability to successfully characterize and classify 10 highly populated functional protein families is shown. Additionally, two related protein families from the group of serine proteases are examined and important structural differences are detected automatically and efficiently. |
---|---|
ISSN: | 1545-5963 1557-9964 |
DOI: | 10.1109/TCBB.2007.1024 |