C ucumis melo compounds: A new avenue for ALR-2 inhibition in diabetes mellitus

Diabetes mellitus (DM) is a prominent contributor to morbidity and mortality in developed nations, primarily attributable to vascular complications such as atherothrombosis occurring in the coronary arteries. Aldose reductase (ALR2), the main enzyme in the polyol pathway, catalyzes the conversion of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-08, Vol.10 (15), p.e35255
Hauptverfasser: Alshaghdali, Khalid, Tasleem, Munazzah, Rezgui, Raja, Alharazi, Talal, Acar, Tolgahan, Aljerwan, Raed Fahad, Altayyar, Ahmed, Siddiqui, Samra, Saeed, Mohd, Yadav, Dharmendra Kumar, Saeed, Amir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetes mellitus (DM) is a prominent contributor to morbidity and mortality in developed nations, primarily attributable to vascular complications such as atherothrombosis occurring in the coronary arteries. Aldose reductase (ALR2), the main enzyme in the polyol pathway, catalyzes the conversion of glucose to sorbitol, leading to a significant buildup of reactive oxygen species in different tissues. It is therefore a prime candidate for therapeutic targeting, and extensive study is currently underway to discover novel natural compounds that can inhibit it. has a long history as a lipid-lowering ethanopharmaceutical plant. In this study, compounds derived from were computationally evaluated as possible lead candidates. Various computational filtering methods were employed to assess the drug-like properties and ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles of the compounds. The compounds were subsequently addressed to analysis of their interactions, molecular docking, and molecular dynamics simulation studies. When compared to the conventional therapeutic compounds, three compounds exhibited enhanced binding affinity and intra-molecular residue interactions, resulting in increased stability and specificity. Consequently, four potent inhibitors, namely PubChem CIDs 119205, 65373, 6184, and 332427, have been identified. These inhibitors exhibit promising potential as pharmacological targets for the advancement of novel ALR-2 inhibitors.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e35255