Mean-variance portfolio selection for a non-life insurance company

We consider a collective insurance risk model with a compound Cox claim process, in which the evolution of a claim intensity is described by a stochastic differential equation driven by a Brownian motion. The insurer operates in a financial market consisting of a risk-free asset with a constant forc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods of operations research (Heidelberg, Germany) Germany), 2007-10, Vol.66 (2), p.339-367
Hauptverfasser: Delong, Lukasz, Gerrard, Russell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a collective insurance risk model with a compound Cox claim process, in which the evolution of a claim intensity is described by a stochastic differential equation driven by a Brownian motion. The insurer operates in a financial market consisting of a risk-free asset with a constant force of interest and a risky asset which price is driven by a Lévy noise. We investigate two optimization problems. The first one is the classical mean-variance portfolio selection. In this case the efficient frontier is derived. The second optimization problem, except the mean-variance terminal objective, includes also a running cost penalizing deviations of the insurer's wealth from a specified profit-solvency target which is a random process. In order to find optimal strategies we apply techniques from the stochastic control theory. [PUBLICATION ABSTRACT]
ISSN:1432-2994
1432-5217
DOI:10.1007/s00186-007-0152-2