Two-Dimensional Chiral Covalent Organic Frameworks with Significant Rashba–Dresselhaus Spin Splitting
Two-dimensional (2D) nonmagnetic semiconductors with large Rashba–Dresselhaus (R-D) spin splitting hold promise for applications in electric-field-controlled spintronics. Current research primarily focuses on metal-based R-D materials. A natural question is whether significant R-D spin splitting can...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2024-08, Vol.15 (34), p.8790-8796 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional (2D) nonmagnetic semiconductors with large Rashba–Dresselhaus (R-D) spin splitting hold promise for applications in electric-field-controlled spintronics. Current research primarily focuses on metal-based R-D materials. A natural question is whether significant R-D spin splitting can be realized in metal-free organic systems. In this work, through first-principles calculations, we demonstrate that 2D chiral covalent organic frameworks (CCOFs) can serve as a potential platform for designing R-D semiconductors. By constructing 2D CCOFs with benzene cores and iodine-based chiral linkers, significant spin splitting at the valence band is achieved. Particularly, with 2,2′-diiodobiphenyl linkers, the R-D energy of spin splitting is 12 meV, accompanied by a coupling constant (α) of 0.12 eVÅ. Meanwhile, the spin texture of the valence band is adjustable via tuning the chirality. Furthermore, through group substitutions, the R-D energy can be notably increased up to 32 meV and the coupling constant up to 0.4 eVÅ, comparable to metal-based R-D materials. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.4c01276 |