Analysis of okadaic acid using electrochemiluminescence imaging on microfluidic biosensing chip
The sensitivity and specificity of electrochemiluminescence (ECL)-based biosensor directly rely on the property of luminophor, the type of sensing carriers and the effectiveness of signal amplification used in the sensor design, which poses a major challenge to manage these elements simultaneously....
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2024-11, Vol.264, p.116690, Article 116690 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sensitivity and specificity of electrochemiluminescence (ECL)-based biosensor directly rely on the property of luminophor, the type of sensing carriers and the effectiveness of signal amplification used in the sensor design, which poses a major challenge to manage these elements simultaneously. In this work, an aggregation-induced electrochemiluminescence (AIECL) microfluidic sensing chip using 4′,4″,4‴,4‴'-(ethene-1,1,2,2-tetrayl)tetrabiphenyl-4-carboxylic acid (TPE)-derived hafnium-based metal-organic framework (Hf-MOF) as emitter was developed. An easily overlooked marine pollutant, okadaic acid (OA) with different concentrations ranging from 5.00 ng/mL to 1.50 × 104 ng/mL at the electrode is visualized imaging benefit from high luminescence efficiency of Hf-MOF coupled the rolling circle amplification strategy assisted by trans-cleavage activity of CRISPR/Cas12a. These highlights will solve the long-lasting task in the accurate analysis of small molecule pollutants, which can be able to provide more worthy reference solution about construction of novel ECL luminophor and signal extraction of low-abundance disease-related biomarkers.
•Novel aggregation-induced electrochemiluminescence emitter of Hf-MOF was synthesized.•ECL imaging and DNA RCA technologies was used for signal amplification and readout.•Microfluidic chip improved the stability of signal output for okadaic acid detection. |
---|---|
ISSN: | 0956-5663 1873-4235 1873-4235 |
DOI: | 10.1016/j.bios.2024.116690 |