AFM-IR of Electrohydrodynamically Printed PbS Quantum Dots: Quantifying Ligand Exchange at the Nanoscale

Colloidal quantum dots (cQDs), semiconductor materials with widely tunable properties, can be printed in submicrometer patterns through electrohydrodynamic printing, avoiding aggressive photolithography steps. Postprinting ligand exchange determines the final optoelectronic properties of the cQD str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-09, Vol.24 (35), p.10908-10914
Hauptverfasser: Ferraresi, Lorenzo J. A., Kara, Gökhan, Burnham, Nancy A., Furrer, Roman, Dirin, Dmitry N., La Mattina, Fabio, Kovalenko, Maksym V., Calame, Michel, Shorubalko, Ivan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colloidal quantum dots (cQDs), semiconductor materials with widely tunable properties, can be printed in submicrometer patterns through electrohydrodynamic printing, avoiding aggressive photolithography steps. Postprinting ligand exchange determines the final optoelectronic properties of the cQD structures. However, achieving a complete bulk exchange is challenging, and the conventional vibrational analysis lacks the required spatial resolution. Infrared nanospectroscopy enables quantitative analysis of vibrational signals and structural topography on the nanometer scale upon ligand substitution on lead sulfide cQDs. A solution of ethanedithiol led to rapid (∼60 s) exchange of ≤90% of the ligands, in structures up to ∼750 nm thick. Prolonged exposures (>1 h) caused the degradation of the microstructures, with a systematic removal of cQDs regulated by surface:bulk ratios and solvent interactions. This study establishes a method for the development of devices through a combination of tunable photoactive materials, additive manufacturing of microstructures, and their quantitative nanometer-scale analysis.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.4c02631