Comparative analysis of non-coding and coding DNA mutations in flat urothelial lesions: biological implications and insights

Recent research in urothelial carcinoma (UC) has focused on coding mutations, leaving the significance of non-coding mutations unexplored. This study aims to evaluate non-coding DNA mutation frequencies compared to coding regions in normal urothelium and flat lesions, exploring their implications fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virchows Archiv : an international journal of pathology 2024-08
Hauptverfasser: Musangile, Fidele Y, Matsuzaki, Ibu, Iwamoto, Ryuta, Sagan, Kanako, Nishikawa, Mizuki, Mikasa, Yurina, Takahashi, Yuichi, Higashine, Ryoma, Kojima, Fumiyoshi, Hara, Isao, Murata, Shin-Ichi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent research in urothelial carcinoma (UC) has focused on coding mutations, leaving the significance of non-coding mutations unexplored. This study aims to evaluate non-coding DNA mutation frequencies compared to coding regions in normal urothelium and flat lesions, exploring their implications for tumor biology. Using targeted next-generation sequencing with UC-related gene panel, we analyzed non-coding and coding DNA mutation frequencies across 119 samples of flat urothelium encompassing various lesion types. Mutation patterns were examined based on the presence of associated flat or papillary tumors, and we investigated the correlation between mutation rates in target genes and genetic mutations within genomic regions. Intronic mutations (IMs) displayed variability across lesions, with normal urothelium (NU) exhibiting the highest frequency (43%) and urothelial carcinoma in situ (CIS) the lowest (9%). We observed similar sets of frequently mutated genes in both intronic and exonic regions, distinct from promoter region mutations. Although IMs paralleled exonic mutations in NU, reactive atypia, and atypia of unknown significance (AUS), they were less prevalent in dysplasia (DYS) and CIS. In contrast to CIS-associated AUS and DYS lesions, AUS-DYS lesions associated with papillary tumors exclusively exhibited recurrent intronic mutations involving FGFR3 and ERCC2, aligning with mutation patterns seen in exonic regions. ERCC2 intronic mutations correlated with the mutation rates of the gene panel. Our findings suggest that intronic mutations significantly contribute to tumor heterogeneity in urothelial lesions and may potentially be linked to genomic instability, warranting further investigation.
ISSN:0945-6317
1432-2307
1432-2307
DOI:10.1007/s00428-024-03901-w