Tailoring the Coordination Microenvironment of Polymolybdate within a Metal–Organic Coordination System for Enhanced Capacitive Activity

The design of a low-cost and efficient electrode material is crucial for electrochemical energy storage. Effectual utilization of polymolybdate as an electrode material for a supercapacitor is promising. Meanwhile, the coordination microenvironments of polymolybdate sho potential effects on its perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2024-09, Vol.63 (35), p.16523-16532
Hauptverfasser: Chen, Keke, Li, Hui, Ma, Jingyi, Chang, Zhihan, Wang, Xiuli
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design of a low-cost and efficient electrode material is crucial for electrochemical energy storage. Effectual utilization of polymolybdate as an electrode material for a supercapacitor is promising. Meanwhile, the coordination microenvironments of polymolybdate sho potential effects on its performance. Herein, we designed and synthesized four polymolybdate-based metal–organic complexes using a structure design strategy. Their structures were characterized and analyzed using single crystallographic data. The theoretical calculations revealed that the coordination microenvironments of polymolybdate play a vital role in the hydrogen ions migration. High H adsorption capacity can obviously boost the electrochemical activity. The 1-based glassy carbon electrode showed the highest specific capacitance value of 1739.4 F·g–1 at the current density of 1 A·g–1. Meanwhile, the carbon cloth-based electrode fabricated by complex 1 (1/CC) also displayed a high capacitance performance. A hybrid supercapacitor was assembled using the 1/CC electrodes and showed a high energy density of 29.0 Wh kg–1 at the power density of 0.80 kW kg–1.
ISSN:0020-1669
1520-510X
1520-510X
DOI:10.1021/acs.inorgchem.4c02867