Single-molecule sensing inside stereo- and regio-defined hetero-nanopores

Heteromeric pore-forming proteins often contain recognition patterns or stereospecific selection filters. However, the construction of heteromeric pore-forming proteins for single-molecule sensing is challenging due to the uncontrollability of producing position isomers and difficulties in purificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2024-11, Vol.19 (11), p.1693-1701
Hauptverfasser: Liu, Wei, Zhu, Qiang, Yang, Chao-Nan, Fu, Ying-Huan, Zhang, Ji-Chang, Li, Meng-Yin, Yang, Zhong-Lin, Xin, Kai-Li, Ma, Jing, Winterhalter, Mathias, Ying, Yi-Lun, Long, Yi-Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heteromeric pore-forming proteins often contain recognition patterns or stereospecific selection filters. However, the construction of heteromeric pore-forming proteins for single-molecule sensing is challenging due to the uncontrollability of producing position isomers and difficulties in purification of regio-defined products. To overcome these preparation obstacles, we present an in situ strategy involving single-molecule chemical modification of a heptameric pore-forming protein to build a stereo- and regio-specific heteromeric nanopore (hetero-nanopore) with a subunit stoichiometric ratio of 3:4. The steric hindrance inherent in the homo-nanopore of K238C aerolysin directs the stereo- and regio-selective modification of maleimide derivatives. Our method utilizes real-time ionic current recording to facilitate controlled voltage manipulation for stoichiometric modification and position-based side-isomer removal. Single-molecule experiments and all-atom molecular dynamics simulations revealed that the hetero-nanopore features an asymmetric stereo- and regio-defined residue structure. The hetero-nanopore produced was characterized by mass spectrometry and single-particle cryogenic electron microscopy. In a proof-of-concept single-molecule sensing experiment, the hetero-nanopore exhibited 95% accuracy for label-free discrimination of four peptide stereoisomers with single-amino-acid structural and chiral differences in the mixtures. The customized hetero-nanopores could advance single-molecule sensing. This Article presents a single-molecule ‘synthesis by sensing’ approach that enables in situ stepwise generation of stereo- and regio-defined heteromeric nanopores to resolve structural and chiral differences of amino-acids in single peptide stereoisomers.
ISSN:1748-3387
1748-3395
1748-3395
DOI:10.1038/s41565-024-01721-2