Fabrication and properties of conductive films based on bacterial cellulose and poly-N-isopropylacrylamide-modified graphene oxide

A conductive film (PNIPAM-rGO/BC) was fabricated combining bacterial cellulose (BC) with poly-N-isopropylacrylamide-modified graphene oxide (PNIPAM-GO) through vacuum filtration and steam reduction techniques. The conductivity and performance of PNIPAM-GO composite and the resulting conductive film...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-10, Vol.278 (Pt 2), p.134867, Article 134867
Hauptverfasser: Yang, Qun, Tan, Jinhong, Tao, Sixuan, Qiu, Huili, Zhou, Weimian, Zhu, Jie, Zhang, Hongjuan, Pei, Liujun, Zhou, Tianchi, Wang, Jiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A conductive film (PNIPAM-rGO/BC) was fabricated combining bacterial cellulose (BC) with poly-N-isopropylacrylamide-modified graphene oxide (PNIPAM-GO) through vacuum filtration and steam reduction techniques. The conductivity and performance of PNIPAM-GO composite and the resulting conductive film were studied. The key findings revealed that PNIPAM-GO composite exhibited a reversible temperature-sensitive behavior. Specifically, the lower critical solution temperature (LCST) increased upon the introduction of graphene oxide (GO). Detailed analyses confirmed uniform dispersion of GO nanosheets within the BC matrix. The incorporation of 10.0 % PNIPAM-GO (containing 7.0 % GO) led to a remarkable 19.6 % increase in tensile strength and approximately 37.0 % enhancement in elongation at break for the conductive film (PNIPAM-rGO/BC) compared to BC. After steam reduction, the electrical conductivity of PNIPAM-rGO/BC exhibited significant improvement over BC. Furthermore, the conductive film demonstrated temperature-dependent conductivity, with a resistivity value approximately 5.2 ± 0.2 KΩ at 25 °C. As the test temperature above the LCST of PNIPAM-GO composite, the resistance decreased. These intriguing temperature-sensitive conductive properties position PNIPAM-rGO/BC as a promising material for smart switches.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.134867