Developing Regression Models for Predicting Pan Evaporation from Climatic Data—A Comparison of Multiple Least-Squares, Principal Components, and Partial Least-Squares Approaches

Regression models for predicting daily pan evaporation depths from climatic data were developed using three multivariate approaches: multiple least-squares regression (MLR), principal components regression (PCR), and partial least-squares (PLS) regression. The objective was to compare the prediction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of irrigation and drainage engineering 2007-10, Vol.133 (5), p.444-454
Hauptverfasser: Kovoor, Gicy M, Nandagiri, Lakshman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regression models for predicting daily pan evaporation depths from climatic data were developed using three multivariate approaches: multiple least-squares regression (MLR), principal components regression (PCR), and partial least-squares (PLS) regression. The objective was to compare the prediction accuracies of regression models developed by these three approaches using historical climatic datasets of four Indian sites that are located in distinctly different climatic regimes. In all cases (three approaches applied to four climatic datasets), regression models were developed using a part of the data and subsequently validated with the remaining data. Results indicated that although performances of the regression models varied from one climate to another, more or less similar prediction accuracies were obtained by all three approaches, and it was difficult to identify the best approach based on performance statistics. However, the final forms of the regression models developed by the three approaches differed substantially from one another. In all cases, the models derived using PLS contained the smallest number of predictor variables; between two to three out of a possible maximum of six predictor variables. The MLR approach yielded models with three to six predictor variables, and PCR models included all six predictor variables. This implies that the PLS regression models are the most parsimonious in terms of input data required for estimating epan from climate variables, and yet yield predictions that are almost as accurate as the more data-intensive MLR and PCR models.
ISSN:0733-9437
1943-4774
DOI:10.1061/(ASCE)0733-9437(2007)133:5(444)